Is it your fault for getting type 2 diabetes? No – type 2 diabetes is not a personal failing. It develops through a combination of factors that are still being uncovered and better understood. Lifestyle (food, exercise, stress, sleep) certainly plays a major role, but genetics play a significant role as well. Type 2 diabetes is often described in the media as a result of being overweight, but the relationship is not that simple. Many overweight individuals never get type 2, and some people with type 2 were never overweight, (although obesity is probably an underlying cause of insulin resistance). To make matters worse, when someone gains weight (for whatever reason), the body makes it extremely difficult to lose the new weight and keep it off. If it were just a matter of choice or a bit of willpower, we would probably all be skinny. At its core, type 2 involves two physiological issues: resistance to the insulin made by the person’s beta cells and too little insulin production relative to the amount one needs.
Doctors can also measure the level of a protein, hemoglobin A1C (also called glycosylated or glycolated hemoglobin), in the blood. Hemoglobin is the red, oxygen-carrying substance in red blood cells. When blood is exposed to high blood glucose levels over a period of time, glucose attaches to the hemoglobin and forms glycosylated hemoglobin. The hemoglobin A1C level (reported as the percentage of hemoglobin that is A1C) reflects long-term trends in blood glucose levels rather than rapid changes.
Some older people cannot control what they eat because someone else is cooking for them—at home or in a nursing home or other institution. When people with diabetes do not do their own cooking, the people who shop and prepare meals for them must also understand the diet that is needed. Older people and their caregivers usually benefit from meeting with a dietitian to develop a healthy, feasible eating plan.

Another diabetes-related sexual dysfunction symptom in men is reduced amounts of ejaculation, or retrograde ejaculation. Retrograde ejaculation is a condition in which the semen goes into the bladder, rather than out of the body through the urethra. Diabetes and damage to the blood vessels causes nerve damage to the muscles that control the bladder and urethra, which results in this problem.
Rates of diabetes in 1985 were estimated at 30 million, increasing to 135 million in 1995 and 217 million in 2005.[18] This increase is believed to be primarily due to the global population aging, a decrease in exercise, and increasing rates of obesity.[18] The five countries with the greatest number of people with diabetes as of 2000 are India having 31.7 million, China 20.8 million, the United States 17.7 million, Indonesia 8.4 million, and Japan 6.8 million.[109] It is recognized as a global epidemic by the World Health Organization.[1]

A random blood sugar of greater than 11.1 mmol/l (200 mg/dl) in association with typical symptoms[23] or a glycated hemoglobin (HbA1c) of ≥ 48 mmol/mol (≥ 6.5 DCCT %) is another method of diagnosing diabetes.[10] In 2009 an International Expert Committee that included representatives of the American Diabetes Association (ADA), the International Diabetes Federation (IDF), and the European Association for the Study of Diabetes (EASD) recommended that a threshold of ≥ 48 mmol/mol (≥ 6.5 DCCT %) should be used to diagnose diabetes.[48] This recommendation was adopted by the American Diabetes Association in 2010.[49] Positive tests should be repeated unless the person presents with typical symptoms and blood sugars >11.1 mmol/l (>200 mg/dl).[48]
The brain depends on glucose as a fuel. As glucose levels drop below 65 mg/dL (3.2 mmol/L) counterregulatory hormones (eg, glucagon, cortisol, epinephrine) are released, and symptoms of hypoglycemia develop. These symptoms include sweatiness, shaking, confusion, behavioral changes, and, eventually, coma when blood glucose levels fall below 30-40 mg/dL.
Type 2 diabetes which accounts for 85-95 per cent of all diabetes has a latent, asymptomatic period of sub-clinical stages which often remains undiagnosed for several years1. As a result, in many patients the vascular complications are already present at the time of diagnosis of diabetes, which is often detected by an opportunistic testing. Asian populations in general, particularly Asian Indians have a high risk of developing diabetes at a younger age when compared with the western populations5. Therefore, it is essential that efforts are made to diagnose diabetes early so that the long term sufferings by the patients and the societal burden can be considerably mitigated.
Jump up ^ Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J (June 2010). "Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies". Lancet. 375 (9733): 2215–22. doi:10.1016/S0140-6736(10)60484-9. PMC 2904878. PMID 20609967.
Information on mortality rates for type 1 diabetes mellitus is difficult to ascertain without complete national registers of childhood diabetes, although age-specific mortality is probably double that of the general population. [35, 36] Children aged 1-4 years are particularly at risk and may die due to DKA at the time of diagnosis. Adolescents are also a high-risk group. Most deaths result from delayed diagnosis or neglected treatment and subsequent cerebral edema during treatment for DKA, although untreated hypoglycemia also causes some deaths. Unexplained death during sleep may also occur and appears more likely to affect young males. [37]
According to the American Diabetes Association, a child has a 1 in 7 risk of getting type 2 diabetes if his/her parent was diagnosed with type 2 diabetes before the age of 50, and a 1 in 13 risk of developing it if the parent was diagnosed after the age of 50. To see if you may be at risk for diabetes, consider taking this short and simple Type 2 Diabetes Risk Test from the ADA.
Diabetes Mellitus Diabetes Mellitus Complications Diabetes Mellitus Control in Hospital Diabetes Mellitus Glucose Management Diabetes Resources Diabetes Sick Day Management Diabetic Ketoacidosis Diabetic Ketoacidosis Management in Adults Diabetic Ketoacidosis Management in Children Diabetic Ketoacidosis Related Cerebral Edema Hyperosmolar Hyperglycemic State Metabolic Syndrome Type 1 Diabetes Mellitus Type 2 Diabetes Mellitus Type 2 Diabetes Mellitus in Children
Complications of diabetes are responsible for considerable morbidity and mortality. The acute complications of diabetes are hypo- and hyperglycemic coma and infections. The chronic complications include microvascular complications such as retinopathy and nephropathy, and the macrovascular complications of heart disease and stroke. Diabetes mellitus is the commonest cause of blindness and renal failure in the UK and the USA. Other common complications include autonomic and peripheral neuropathy. A combination of vascular and neuropathic disturbances results in a high prevalence of impotence in men with diabetes. Peripheral neuropathy causes lack of sensation in the feet which can cause minor injuries to go unnoticed, become infected and, with circulatory problems obstructing healing, ulceration and gangrene are serious risks and amputation is not uncommon. Evidence from meta-analysis of studies of the relationship between glycemic control and microvascular complications (Wang, Lau, & Chalmers, 1993), and from the longitudinal multicenter Diabetes Control and Complications Trial (DCCT) in the USA (DCCT Research Group, 1993), have established a clear relationship between improved blood glucose control and reduction of risk of retinopathy and other microvascular complications in insulin-dependent diabetes mellitus (IDDM). It is likely that there would be similar findings for noninsulin-dependent diabetes mellitus (NIDDM) though the studies did not include NIDDM patients. However, the DCCT included highly selected, well-motivated, well-educated and well-supported patients, cared for by well-staffed diabetes care teams involving educators and psychologists as well as diabetologists and diabetes specialist nurses.
Home blood glucose monitoring kits are available so patients with diabetes can monitor their own levels. A small needle or lancet is used to prick the finger and a drop of blood is collected and analyzed by a monitoring device. Some patients may test their blood glucose levels several times during a day and use this information to adjust their doses of insulin.
How is it treated? There is no uniform therapy for type 2 diabetes treatment, which depends on the individual person and his or her stage of type 2 diabetes. To learn more about individualization of therapy, please read our patient guide. That said, the ADA and EASD have created treatment recommendation guidelines for type 2 diabetes progression. In all cases, healthy eating, exercise, and weight management are key to effective type 2 diabetes management. As type 2 diabetes progresses, patients may need to add one or more drugs to their treatment regimen.
Type 1 and type 2 diabetes were identified as separate conditions for the first time by the Indian physicians Sushruta and Charaka in 400–500 CE with type 1 associated with youth and type 2 with being overweight.[108] The term "mellitus" or "from honey" was added by the Briton John Rolle in the late 1700s to separate the condition from diabetes insipidus, which is also associated with frequent urination.[108] Effective treatment was not developed until the early part of the 20th century, when Canadians Frederick Banting and Charles Herbert Best isolated and purified insulin in 1921 and 1922.[108] This was followed by the development of the long-acting insulin NPH in the 1940s.[108]
While many experts believe that most type 1 genes have been identified, the situation with type 2 diabetes is much different. A recent study found that the known genetic links to type 2 probably account for only about 6 percent of the genetic predisposition for that form of diabetes. This could mean either that some of the genes discovered have a bigger effect than is currently believed or that "we are still missing 94 percent of the genes," says Atul Butte, MD, PhD, an assistant professor of pediatrics at Stanford University.
According to the Mayo Clinic, your risk of developing type 2 diabetes increases as you age. Your risk goes up after age 45 in particular. However, the incidence of type 2 diabetes is increasing dramatically among children, adolescents, and younger adults. Likely factors include reduced exercise, decreased muscle mass, and weight gain as you age. Type 1 diabetes is usually diagnosed by the age of 30.
Indigestion (dyspepsia) can be caused by diseases or conditions that involve the gastrointestinal (GI) tract, and also by some diseases and conditions that do not involve the GI tract. Indigestion can be a chronic condition in which the symptoms fluctuate infrequency and intensity. Signs and symptoms that accompany indigestion include pain in the chest, upper abdominal pain, belching, nausea, bloating, abdominal distention, feeling full after eating only a small portion of food, and rarely, vomiting.
People with T2D produce insulin, but their bodies don’t use it correctly; this is referred to as being insulin resistant. People with type 2 diabetes may also be unable to produce enough insulin to handle the glucose in their body. In these instances, insulin is needed to allow the glucose to travel from the bloodstream into our cells, where it’s used to create energy.
^ Jump up to: a b Funnell, Martha M.; Anderson, Robert M. (2008). "Influencing self-management: from compliance to collaboration". In Feinglos, Mark N.; Bethel, M. Angelyn. Type 2 diabetes mellitus: an evidence-based approach to practical management. Contemporary endocrinology. Totowa, NJ: Humana Press. p. 462. ISBN 978-1-58829-794-5. OCLC 261324723.

Type 1 DM is caused by autoimmune destruction of the insulin-secreting beta cells of the pancreas. The loss of these cells results in nearly complete insulin deficiency; without exogenous insulin, type 1 DM is rapidly fatal. Type 2 DM results partly from a decreased sensitivity of muscle cells to insulin-mediated glucose uptake and partly from a relative decrease in pancreatic insulin secretion.


Visual impairment and blindness are common sequelae of uncontrolled diabetes. The three most frequently occurring problems involving the eye are diabetic retinopathy, cataracts, and glaucoma. photocoagulation of destructive lesions of the retina with laser beams can be used to delay further progress of pathologic changes and thereby preserve sight in the affected eye.
Jump up ^ Attridge, Madeleine; Creamer, John; Ramsden, Michael; Cannings-John, Rebecca; Hawthorne, Kamila (2014-09-04). "Culturally appropriate health education for people in ethnic minority groups with type 2 diabetes mellitus". Cochrane Database of Systematic Reviews (9): CD006424. doi:10.1002/14651858.CD006424.pub3. ISSN 1469-493X. PMID 25188210.
A positive result, in the absence of unequivocal high blood sugar, should be confirmed by a repeat of any of the above methods on a different day. It is preferable to measure a fasting glucose level because of the ease of measurement and the considerable time commitment of formal glucose tolerance testing, which takes two hours to complete and offers no prognostic advantage over the fasting test.[66] According to the current definition, two fasting glucose measurements above 7.0 mmol/l (126 mg/dl) is considered diagnostic for diabetes mellitus.

Most people with diabetes should keep a record of their blood glucose levels and report them to their doctor or nurse for advice in adjusting the dose of insulin or the oral antihyperglycemic drug. Many people can learn to adjust the insulin dose on their own as necessary. Some people who have mild or early type 2 diabetes that is well-controlled with one or two drugs may be able to monitor their fingerstick glucose levels relatively infrequently.
The good news is that behavior still seems to help shape whether someone with the genetic disposition actually develops type 2—and that changes in diet and exercise can sometimes be enough to ward off the disease. "People sometimes have the misconception that if we say something is genetic, then they can't do anything about preventing diabetes and its complications," says Hanis. But he notes that in a landmark study, lifestyle interventions prevented or delayed type 2 in nearly 60 percent of people at high risk. "If we focus on changing the environment, we can prevent diabetes," he says. "As we understand the genetics, we can prevent more of it."
Low blood sugar (hypoglycemia). If your blood sugar level drops below your target range, it's known as low blood sugar (hypoglycemia). Your blood sugar level can drop for many reasons, including skipping a meal, inadvertently taking more medication than usual or getting more physical activity than normal. Low blood sugar is most likely if you take glucose-lowering medications that promote the secretion of insulin or if you're taking insulin.

Glucose is a simple sugar found in food. Glucose is an essential nutrient that provides energy for the proper functioning of the body cells. Carbohydrates are broken down in the small intestine and the glucose in digested food is then absorbed by the intestinal cells into the bloodstream, and is carried by the bloodstream to all the cells in the body where it is utilized. However, glucose cannot enter the cells alone and needs insulin to aid in its transport into the cells. Without insulin, the cells become starved of glucose energy despite the presence of abundant glucose in the bloodstream. In certain types of diabetes, the cells' inability to utilize glucose gives rise to the ironic situation of "starvation in the midst of plenty". The abundant, unutilized glucose is wastefully excreted in the urine.
Sugary breath isn’t as sweet as it seems.  Diabetics often notice that they’ve developed sweet or nail-polish-like breath before they’re diagnosed. However, if you’re dealing with this strange symptom, time is of the essence. Sweet breath is often a sign of diabetic ketoacidosis, a condition in which your body can’t effectively convert glucose into energy, keeping your blood sugar at dangerous—potentially fatal—levels if untreated.
Diabetes mellitus is a chronic disease for which there is treatment but no known cure.  Treatment is aimed at keeping blood glucose levels as close to normal as possible.  This is achieved with a combination of diet, exercise and insulin or oral medication.  People with type 1 diabetes need to be hospitalized right after they are diagnosed to get their glucose levels down to an acceptable level.

Type 2 diabetes used to be called adult-onset diabetes or non-insulin dependent diabetes because it was diagnosed mainly in adults who did not require insulin to manage their condition. However, because more children are starting to be diagnosed with T2D, and insulin is used more frequently to help manage type 2 diabetes, referring to the condition as “adult-onset” or “non-insulin dependent” is no longer accurate.
Jump up ^ Imperatore, Giuseppina; Boyle, James P.; Thompson, Theodore J.; Case, Doug; Dabelea, Dana; Hamman, Richard F.; Lawrence, Jean M.; Liese, Angela D.; Liu, Lenna L. (December 2012). "Projections of Type 1 and Type 2 Diabetes Burden in the U.S. Population Aged <20 Years Through 2050". Diabetes Care. 35 (12): 2515–20. doi:10.2337/dc12-0669. ISSN 0149-5992. PMC 3507562. PMID 23173134. Archived from the original on 2016-08-14.
The elderly diabetic person is at increased risk of atrial fibrillation (odds ratio: 1.4 for men and 1.6 for women)232 and at twofold increased risk of thromboembolism from atrial fibrillation.233,234 We can find no subgroup analysis of the major atrial fibrillation trials to examine the benefits of warfarin specifically in older diabetic subjects. It appears that the adverse event rate in diabetic people drops from 8.6 events per 100 patients per year to 2.8 events with warfarin use.234 It is important to check for retinal new vessels when diabetic subjects are placed on warfarin, although the Early Treatment Diabetic Retinopathy Study235 showed no excess vitreous or preretinal hemorrhages in subjects given aspirin for vascular prophylaxis.
It is a considerable challenge to obtain the goals of the intensively treated patients in the DCCT with the vast majority of people with diabetes given the more limited health care resources typically available in routine practice. If diabetes control can be improved without significant damage to quality of life, the economic, health, and quality of life savings associated with a reduction in complications in later life will be vast. Although some people who have had poorly controlled diabetes over many years do not develop complications, complications commonly arise after 15–20 years of diabetes and individuals in their 40s or even 30s may develop several complications in rapid succession. However, up until the early 1980s, patients had no way of monitoring their own blood glucose levels at home. Urine glucose monitoring only told them when their blood glucose had exceeded the renal threshold of approximately 10 mmol/L (i.e., was far too high), without being able to discriminate between the too high levels of 7–10 mmol/L or the hypoglycemic levels below 4 mmol/L. Clinics relied on random blood glucose testing and there were no measures of average blood glucose over a longer period. Since the 1980s there have been measures of glycosylated hemoglobin (GHb, HbA1, or HbA1c) which indicate average blood glucose over a six to eight week period and measures of glycosylated protein, fructosamine, which indicates average blood glucose over a two-week period. Blood-glucose meters for patients were first introduced in the early 1980s and the accuracy and convenience of the meters and the reagent strips they use has improved dramatically since early models. By the late 1990s blood-glucose monitoring is part of the daily routine for most people using insulin in developed countries. Blood-glucose monitoring is less often prescribed for tablet- and diet-alone-treated patients, financial reasons probably being allowed to outweigh the educational value of accurate feedback in improving control long term. The reduced risk of hypoglycemia and diabetic ketoacidosis in NIDDM patients not using insulin means that acute crises rarely arise in these patients though their risk of long-term complications is at least as great as in IDDM and might be expected to be reduced if feedback from blood-glucose monitoring were provided.
A. Diabetes is the inability of the body to ‘produce insulin - type 1 diabetes’ or ‘proper use of insulin - type 2 diabetes, gestational diabetes and pre-diabetes’. Diabetes is often goes undiagnosed because many of the symptoms of diabetes seems harmless. The causes of diabetes continues to be a mystery, pancreas it the organ whose defect causes diabetes.

Many older people have difficulty following a healthy, balanced diet that can control blood glucose levels and weight. Changing long-held food preferences and dietary habits may be hard. Some older people have other disorders that can be affected by diet and may not understand how to integrate the dietary recommendations for their various disorders.


In type 2 diabetes (formerly called non– insulin-dependent diabetes or adult-onset diabetes), the pancreas often continues to produce insulin, sometimes even at higher-than-normal levels, especially early in the disease. However, the body develops resistance to the effects of insulin, so there is not enough insulin to meet the body’s needs. As type 2 diabetes progresses, the insulin-producing ability of the pancreas decreases.

What is type 2 diabetes and prediabetes? Behind type 2 diabetes is a disease where the body’s cells have trouble responding to insulin – this is called insulin resistance. Insulin is a hormone needed to store the energy found in food into the body’s cells. In prediabetes, insulin resistance starts growing and the beta cells in the pancreas that release insulin will try to make even more insulin to make up for the body’s insensitivity. This can go on for a long time without any symptoms. Over time, though, the beta cells in the pancreas will fatigue and will no longer be able to produce enough insulin – this is called “beta burnout.” Once there is not enough insulin, blood sugars will start to rise above normal. Prediabetes causes people to have higher-than-normal blood sugars (and an increased risk for heart disease and stroke). Left unnoticed or untreated, blood sugars continue to worsen and many people progress to type 2 diabetes. After a while, so many of the beta cells have been damaged that diabetes becomes an irreversible condition. 
Diabetes mellitus (DM) is a strong predictor of cardiovascular morbidity and mortality and is associated with both micro- and macrovascular complications.1 Cardiovascular disease (CVD) causes up to 70% of all deaths in people with DM. The epidemic of DM will thus be followed by a burden of diabetes-related vascular diseases. The number of DM patients increases with aging of the population, in part because of the increasing prevalence of obesity and sedentary lifestyle. Although the mortality from coronary artery disease (CAD) in patients without DM has declined since the 1990s, the mortality in men with type 2 diabetes (T2DM) has not changed significantly.2 Moreover, DM is an independent risk factor for heart failure. Heart failure is closely related to diabetic cardiomyopathy: changes in the structure and function of the myocardium are not directly linked to CAD or hypertension. Diabetic cardiomyopathy is clinically characterized by an initial increase in left ventricular stiffness and subclinical diastolic dysfunction, gradually compromising left ventricular systolic function with loss of contractile function and progress into overt congestive heart failure. DM accounts for a significant percentage of patients with a diagnosis of heart failure in epidemiologic studies such as the Framingham Study and the UK Prospective Diabetes Study (UKPDS).2 A 1% increase in glycated hemoglobin (HbA1c) correlates to an increment of 8% in heart failure.3 The prevalence of heart failure in elderly diabetic patients is up to 30%.3
What his theory boils down to is that type 2 diabetes is caused not by extra fat alone, but by fat stored in the wrong places. "Virtually all the individuals [with insulin resistance] have fat accumulation in liver and muscle," Shulman says, where it may disrupt normal biological processes, leading to insulin resistance. "If you can understand this, you can ideally come up with new ways to prevent insulin resistance and type 2 diabetes."
Diabetes is one of the first diseases described[21] with an Egyptian manuscript from c. 1500 BCE mentioning "too great emptying of the urine."[110] The first described cases are believed to be of type 1 diabetes.[110] Indian physicians around the same time identified the disease and classified it as madhumeha or honey urine noting that the urine would attract ants.[110] The term "diabetes" or "to pass through" was first used in 230 BCE by the Greek Apollonius Of Memphis.[110] The disease was rare during the time of the Roman empire with Galen commenting that he had only seen two cases during his career.[110]
In this health topic, we discuss hyperglycemic hyperosmolar nonketotic syndrome (HHNS), an extremely serious complication that can lead to diabetic coma and even death in type 2 diabetes. This serious condition occurs when the blood sugar gets too high and the body becomes severely dehydrated. To prevent HHNS and diabetic coma in type 2 diabetes, check your blood sugar regularly as recommended by your health care provider; check your blood sugar more frequently when you are sick, drink plenty of fluids, and watch for signs of dehydration.
×