About 84 million adults in the US (more than 1 out of 3) have prediabetes, and about 90% do not know they have it until a routine blood test is ordered, or symptoms of type 2 diabetes develop. For example, excessive thirst, frequent urination, and unexplained weight loss. If you have prediabetes also it puts you at risk for heart attack, stroke, and type 2 diabetes.
Along with following your diabetes care plan, you may need diabetes medicines, which may include pills or medicines you inject under your skin, such as insulin. Over time, you may need more than one diabetes medicine to manage your blood glucose. Even if you don’t take insulin, you may need it at special times, such as during pregnancy or if you are in the hospital. You also may need medicines for high blood pressure, high cholesterol, or other conditions.
At present, the American Diabetes Association does not recommend general screening of the population for type 1 diabetes, though screening of high risk individuals, such as those with a first degree relative (sibling or parent) with type 1 diabetes should be encouraged. Type 1 diabetes tends to occur in young, lean individuals, usually before 30 years of age; however, older patients do present with this form of diabetes on occasion. This subgroup is referred to as latent autoimmune diabetes in adults (LADA). LADA is a slow, progressive form of type 1 diabetes. Of all the people with diabetes, only approximately 10% have type 1 diabetes and the remaining 90% have type 2 diabetes.

Type 2 diabetes typically starts with insulin resistance. That is, the cells of the body resist insulin’s efforts to escort glucose into the cells. What causes insulin resistance? It appears to be caused by an accumulation of microscopic fat particles within muscle and liver cells.4 This fat comes mainly from the diet—chicken fat, beef fat, cheese fat, fish fat, and even vegetable fat. To try to overcome insulin resistance, the pancreas produces extra insulin. When the pancreas can no longer keep up, blood sugar rises. The combination of insulin resistance and pancreatic cell failure leads to type 2 diabetes.

Different environmental effects on type 1 diabetes mellitus development complicate the influence of race, but racial differences are evident. Whites have the highest reported incidence, whereas Chinese individuals have the lowest. Type 1 diabetes mellitus is 1.5 times more likely to develop in American whites than in American blacks or Hispanics. Current evidence suggests that when immigrants from an area with low incidence move to an area with higher incidence, their rates of type 1 diabetes mellitus tend to increase toward the higher level.


Q. My 7yr has Diabetes. She been Diabetic for about 5 weeks and we can't get numbers at a good spot. she aether way to low (30- 60 scary when she gets like this) and to high (300 - 400) We been looking at what she eating calling the physician. he been play with here shots but nothing working. Its when she at school is were the nuber are mostly going up an down. we been trying to work with the school but she the only one in the hole school that has Diabetes. what to do ?
Q. My 7yr has Diabetes. She been Diabetic for about 5 weeks and we can't get numbers at a good spot. she aether way to low (30- 60 scary when she gets like this) and to high (300 - 400) We been looking at what she eating calling the physician. he been play with here shots but nothing working. Its when she at school is were the nuber are mostly going up an down. we been trying to work with the school but she the only one in the hole school that has Diabetes. what to do ?
Type 2 DM is primarily due to lifestyle factors and genetics.[45] A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[16] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11]

The classic symptoms of diabetes such as polyuria, polydypsia and polyphagia occur commonly in type 1 diabetes, which has a rapid development of severe hyperglycaemia and also in type 2 diabetes with very high levels of hyperglycaemia. Severe weight loss is common only in type 1 diabetes or if type 2 diabetes remains undetected for a long period. Unexplained weight loss, fatigue and restlessness and body pain are also common signs of undetected diabetes. Symptoms that are mild or have gradual development could also remain unnoticed.
For people who want to avoid drugs, taking an aggressive approach to healthy eating plan and lifestyle change is an option. It isn't easy, but if someone is very committed and motivated, lifestyle changes can be enough to maintain a healthy blood sugar level and to lose weight. Learning about a healthy diabetes diet (a low glycemic load diet) can be an good place to start.
Eating a balanced diet that is rich in fiber, non-starchy vegetables, lean protein, and healthy fat can help get you to your goal weight and reduce your waist size and body mass index (BMI). Reducing your intake of sweetened beverages (juices, sodas) is the easiest way to lose weight and reduce blood sugars. If you are someone who has high blood pressure and are salt sensitive, aim to reduce your intake of sodium; do not add salt to your food, read package labels for added sodium, and reduce your intake of fast food and take out. Don't go on a diet. Instead, adapt a healthier way of eating, one that you'll enjoy for a long time.
A person of Asian origin aged 35 yr or more with two or more of the above risk factors, should undergo a screening test for diabetes. An oral glucose tolerance test (OGTT) is commonly used as the screening test10. Fasting and 2 h post glucose tests can identify impaired fasting glucose (IFG) (fasting glucose >110 - <125 mg/dl), impaired glucose tolerance (IGT) (2 h glucose >140-<200 mg/dl) and presence of diabetes (fasting > 126 and 2 h glucose >200 mg/dl). If a random blood glucose value is > 150 mg/dl, further confirmation by an OGTT is warranted. Recently, glycosylated haemoglobin (HbA1c) has been recommended as the test for diagnosis of diabetes (>6.5%). Presence of pre-diabetes is indicated by HbA1c values between 5.7 - 6.4 per cent11.
Jump up ^ Zheng, Sean L.; Roddick, Alistair J.; Aghar-Jaffar, Rochan; Shun-Shin, Matthew J.; Francis, Darrel; Oliver, Nick; Meeran, Karim (17 April 2018). "Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes". JAMA. 319 (15): 1580. doi:10.1001/jama.2018.3024.
Before you find yourself shocked by a diabetes diagnosis, make sure you know these 20 diabetes signs you shouldn’t ignore. If you identify with any of these warning signs on the list, be sure to visit your doctor ASAP to get your blood sugar tested. And if you want to reduce your risk of becoming diabetic in the first place, start with the 40 Tips That Double Weight Loss!
As of 2016, 422 million people have diabetes worldwide,[101] up from an estimated 382 million people in 2013[17] and from 108 million in 1980.[101] Accounting for the shifting age structure of the global population, the prevalence of diabetes is 8.5% among adults, nearly double the rate of 4.7% in 1980.[101] Type 2 makes up about 90% of the cases.[16][18] Some data indicate rates are roughly equal in women and men,[18] but male excess in diabetes has been found in many populations with higher type 2 incidence, possibly due to sex-related differences in insulin sensitivity, consequences of obesity and regional body fat deposition, and other contributing factors such as high blood pressure, tobacco smoking, and alcohol intake.[102][103]
From a dental perspective, pregnancy leads to hormonal changes that increase the mother’s risk of developing gingivitis and gingival lesions called pregnancy tumors (see Right). Not surprisingly, poor glycemic control further adds to this risk. Therefore, it is imperative that if you become pregnant, you should promptly see your dentist. He or she will work with you to ensure that your dental self-care regimen is maximized to prevent or control your dental disease. Additional Resources on Diabetes and Oral Health National Institute of Dental and Craniofacial Research www.nidcr.nih.gov American Diabetes Association www.diabetes.org American Dental Association www.dental.org American Academy of Periodontology www.perio.org The Diabetes Monitor www.diabetesmonitor.com David Mendosa www.mendosa.com Diatribe www.diatribe.us The information contained in this monograph is for educational purposes only. This information is not a substitute for professional medical advice, diagnosis, or treatment. If you have or suspect you may have a health concern, consult your professional health care provider. Reliance on any information provided in this monograph is solely at your own risk.
Insulin-dependent diabetes mellitus is believed to result from autoimmune, environmental, and/or genetic factors. Whatever the cause, the end result is destruction of insulin-producing pancreatic beta cells, a dramatic decrease in the secretion of insulin, and hyperglycemia. Non-insulin-dependent diabetes mellitus is presumably heterogeneous in origin. It is associated with older age, obesity, a family history of diabetes, and ethnicity (genetic components). The vast majority of those with non-insulin-dependent diabetes are overweight Kahn (2003). This form of the disorder has a much slower rate of progression than insulin-dependent diabetes. Over time the ability to respond to insulin decreases, resulting in increased levels of blood glucose. The pancreatic secretion of insulin increases in an attempt to compensate for the elevated levels of glucose. If the condition is untreated, the pancreatic production of insulin decreases and may even cease.

Oral Agents. Oral antidiabetic drugs (see hypoglycemic agents) are sometimes prescribed for patients with type 2 diabetes who cannot control their blood glucose with diet and exercise. These are not oral forms of insulin; they are sulfonylureas, chemically related to the sulfonamide antibiotics. Patients receiving them should be taught that the drug they are taking does not eliminate the need for a diet and exercise program. Only the prescribed dosage should be taken; it should never be increased to make up for dietary indiscretions or discontinued unless authorized by the physician.

Jump up ^ Picot, J; Jones, J; Colquitt, JL; Gospodarevskaya, E; Loveman, E; Baxter, L; Clegg, AJ (September 2009). "The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation". Health Technology Assessment. Winchester, England. 13 (41): iii–iv, 1–190, 215–357. doi:10.3310/hta13410. PMID 19726018.

Although this complication is not seen in pediatric patients, it is a significant cause of morbidity and premature mortality in adults with diabetes. People with type 1 diabetes mellitus have twice the risk of fatal myocardial infarction (MI) and stroke that people unaffected with diabetes do; in women, the MI risk is 4 times greater. People with type 1 diabetes mellitus also have 4 times greater risk for atherosclerosis.
A chronic metabolic disorder in which the use of carbohydrate is impaired and that of lipid and protein is enhanced. It is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma. Long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection.

Ketoacidosis, a condition due to starvation or uncontrolled diabetes, is common in Type I diabetes. Ketones are acid compounds that form in the blood when the body breaks down fats and proteins. Symptoms include abdominal pain, vomiting, rapid breathing, extreme lethargy, and drowsiness. Patients with ketoacidosis will also have a sweet breath odor. Left untreated, this condition can lead to coma and death.


The United Kingdom Prospective Diabetes Study (UKPDS) was a clinical study conducted by Z that was published in The Lancet in 1998. Around 3,800 people with type 2 diabetes were followed for an average of ten years, and were treated with tight glucose control or the standard of care, and again the treatment arm had far better outcomes. This confirmed the importance of tight glucose control, as well as blood pressure control, for people with this condition.[86][132][133]

Accelerated atherosclerosis is the main underlying factor contributing to the high risk of atherothrombotic events in DM patients. CAD, peripheral vascular disease, stroke, and increased intima-media thickness are the main macrovascular complications. Diabetics are 2–4 times more likely to develop stroke than people without DM.2 CVD, particularly CAD, is the leading cause of morbidity and mortality in patients with DM.4 Patients with T2DM have a 2- to 4-fold increase in the risk of CAD, and patients with DM but without previous myocardial infarction (MI) carry the same level of risk for subsequent acute coronary events as nondiabetic patients with previous MI.5 Furthermore, people with diabetes have a poorer long-term prognosis after MI, including an increased risk for congestive heart failure and death.

Per the WHO, people with fasting glucose levels from 6.1 to 6.9 mmol/l (110 to 125 mg/dl) are considered to have impaired fasting glucose.[67] people with plasma glucose at or above 7.8 mmol/l (140 mg/dl), but not over 11.1 mmol/l (200 mg/dl), two hours after a 75 gram oral glucose load are considered to have impaired glucose tolerance. Of these two prediabetic states, the latter in particular is a major risk factor for progression to full-blown diabetes mellitus, as well as cardiovascular disease.[68] The American Diabetes Association (ADA) since 2003 uses a slightly different range for impaired fasting glucose of 5.6 to 6.9 mmol/l (100 to 125 mg/dl).[69]


The problem with sweetened drinks is that, due to their liquid form, they’re among the fastest simple carbs to be digested in the body, causing blood sugar levels to spike even more than a simple carb in solid-food form would. Research supports this idea: A review published in November 2010 in the journal Diabetes Care suggested adding only one serving of a sweetened beverage to your diet may increase your risk for type 2 diabetes by 15 percent.

But if you’re struggling with weight loss, eating fewer foods with added sugar and fat can be a step in the right direction for improving your health and potentially reducing your diabetes risk. In fact, if you have been diagnosed with prediabetes, losing just 5 to 7 percent of your body weight can reduce your risk for type 2 diabetes, according to the CDC.


You should expect your dentist to inquire about how you monitor your blood sugar and your current status (e.g. most recent HbA1c, medication profile). For most routine dental procedures (e.g. examinations, simple fillings, routine cleanings), no special alterations in the delivery of dental care are necessary. However, more involved procedures, such as extensive surgery or treatment of serious infection, may interfere with your normal diabetes management. For such cases, your dentist will work with your physician to ensure the most appropriate approach to care is undertaken. For example, if you need a surgical procedure that will temporarily interfere with your ability to eat, special modifications regarding your nutrition and medication dosing may be prescribed. Finally, if you notice any unusual changes in your mouth (e.g. swelling, pain, red areas) you should see your dentist as soon as possible. These changes may indicate the presence of an infection that may compromise your normal blood sugar control and lead to a worsening of your ability to fight infection. As a result, your infection could become more difficult to treat.
FIGURE 19-1 ■. This figure shows the hyperbolic relationship of insulin resistance and beta cell function. On the y-axis is beta cell function as reflected in the first-phase insulin response during intravenous (IV) glucose infusion; on the x-axis is insulin sensitivity and its mirror image resistance. In a subject with normal glucose tolerance (NGT) and beta-cell reserve, an increase in insulin resistance results in increased insulin release and normal glucose tolerance. In an individual for whom the capacity to increase insulin release is compromised, increasing insulin resistance with partial or no beta-cell compensation results in progression from normal glucose tolerance, to impaired glucose tolerance (IGT), and finally to diabetes (T2D). Differences between these categories are small at high insulin sensitivity, which may be maintained by weight reduction, exercise, and certain drugs. At a critical degree of insulin resistance, due to obesity or other listed factors, only a further small increment in resistance requires a large increase in insulin output. Those that can increase insulin secretion to this extent retain normal glucose tolerance; those who cannot achieve this degree of insulin secretion (e.g., due to a mild defect in genes regulating insulin synthesis, insulin secretion, insulin action, or an ongoing immune destruction of beta cells) now unmask varying degrees of carbohydrate intolerance. The product of insulin sensitivity (the reciprocal of insulin resistance) and acute insulin response (a measurement beta-cell function) has been called the “disposition index.” This index remains constant in an individual with normal beta cell compensation in response to changes in insulin resistance. IGT, impaired glucose tolerance; NGT, normal glucose tolerance; T2D, type 2 diabetes.

A. Diabetes is the inability of the body to ‘produce insulin - type 1 diabetes’ or ‘proper use of insulin - type 2 diabetes, gestational diabetes and pre-diabetes’. Diabetes is often goes undiagnosed because many of the symptoms of diabetes seems harmless. The causes of diabetes continues to be a mystery, pancreas it the organ whose defect causes diabetes.
Risk factors for type 2 diabetes include obesity, high cholesterol, high blood pressure, and physical inactivity. The risk of developing type 2 diabetes also increases as people grow older. People who are over 40 and overweight are more likely to develop type 2 diabetes, although the incidence of this type of diabetes in adolescents is growing. Diabetes is more common among Native Americans, African Americans, Hispanic Americans and Asian Americans/Pacific Islanders. Also, people who develop diabetes while pregnant (a condition called gestational diabetes) are more likely to develop type 2 diabetes later in life.

A second theory, dubbed the hygiene hypothesis, blames the rise of type 1 on a society that's too clean. Good housekeeping and hygiene habits mean far fewer interactions with germs, which in turn may foster an immune system prone to going awry. "In a developing country, you have more infectious disease. This is associated with a lower risk of type 1 diabetes," says Li Wen, MD, PhD, an immunologist at the Yale University School of Medicine. In her lab, rodents raised in hyper-clean environments are more likely to get type 1 than those reared in dirtier cages.

Diabetes is a chronic condition, and it can last an entire lifetime. The goal of treating diabetes is to keep blood glucose levels as close to a normal range as possible. This prevents the symptoms of diabetes and the long-term complications of the condition. If you've been diagnosed with diabetes, your doctor – working with the members of your diabetes care team – will help you find your target blood glucose levels.
There are many types of sugar. Some sugars are simple, and others are complex. Table sugar (sucrose) is made of two simpler sugars called glucose and fructose. Milk sugar (lactose) is made of glucose and a simple sugar called galactose. The carbohydrates in starches, such as bread, pasta, rice, and similar foods, are long chains of different simple sugar molecules. Sucrose, lactose, carbohydrates, and other complex sugars must be broken down into simple sugars by enzymes in the digestive tract before the body can absorb them.

When it comes to diabetes, there's no real answer yet. Yes, science has begun to uncover the roots of this disease, unearthing a complex interplay of genes and environment—and a lot more unanswered questions. Meanwhile, there's plenty of misinformation to go around. (How often have you had to explain that diabetes doesn't happen because someone "ate too much"?)
Weight loss surgery in those who are obese is an effective measure to treat diabetes.[101] Many are able to maintain normal blood sugar levels with little or no medication following surgery[102] and long-term mortality is decreased.[103] There however is some short-term mortality risk of less than 1% from the surgery.[104] The body mass index cutoffs for when surgery is appropriate are not yet clear.[103] It is recommended that this option be considered in those who are unable to get both their weight and blood sugar under control.[105][106]
Diabetes mellitus is a chronic disease for which there is treatment but no known cure.  Treatment is aimed at keeping blood glucose levels as close to normal as possible.  This is achieved with a combination of diet, exercise and insulin or oral medication.  People with type 1 diabetes need to be hospitalized right after they are diagnosed to get their glucose levels down to an acceptable level.
Type 1 DM is caused by autoimmune destruction of the insulin-secreting beta cells of the pancreas. The loss of these cells results in nearly complete insulin deficiency; without exogenous insulin, type 1 DM is rapidly fatal. Type 2 DM results partly from a decreased sensitivity of muscle cells to insulin-mediated glucose uptake and partly from a relative decrease in pancreatic insulin secretion.
You are more likely to develop type 2 diabetes if you are not physically active and are overweight or obese. Extra weight sometimes causes insulin resistance and is common in people with type 2 diabetes. The location of body fat also makes a difference. Extra belly fat is linked to insulin resistance, type 2 diabetes, and heart and blood vessel disease. To see if your weight puts you at risk for type 2 diabetes, check out these Body Mass Index (BMI) charts.

The food that people eat provides the body with glucose, which is used by the cells as a source of energy. If insulin isn't available or doesn't work correctly to move glucose from the blood into cells, glucose will stay in the blood. High blood glucose levels are toxic, and cells that don't get glucose are lacking the fuel they need to function properly.


Type 2 diabetes is mainly caused by insulin resistance. This means no matter how much or how little insulin is made, the body can't use it as well as it should. As a result, glucose can't be moved from the blood into cells. Over time, the excess sugar in the blood gradually poisons the pancreas causing it to make less insulin and making it even more difficult to keep blood glucose under control.

We give you special kudos for managing your condition, as it is not always easy. If you've had diabetes for a long time, it's normal to burn out sometimes. You may get tired of your day to day tasks, such as counting carbohydrates or measuring your blood sugar. Lean on a loved one or a friend for support, or consider talking to someone else who has diabetes who can provide, perhaps, an even more understanding ear or ideas that can help you.
There are two major types of diabetes, called type 1 and type 2. Type 1 diabetes was also formerly called insulin dependent diabetes mellitus (IDDM), or juvenile-onset diabetes mellitus. In type 1 diabetes, the pancreas undergoes an autoimmune attack by the body itself, and is rendered incapable of making insulin. Abnormal antibodies have been found in the majority of patients with type 1 diabetes. Antibodies are proteins in the blood that are part of the body's immune system. The patient with type 1 diabetes must rely on insulin medication for survival.
The protocol for therapy is determined by the type of diabetes; patients with either type 1 or type 2 must pay attention to their diet and exercise regimens. Insulin therapy may be prescribed for patients with type 2 diabetes as well as any who are dependent on insulin. In most cases, the type 2 diabetes patient can be treated effectively by reducing caloric intake, maintaining target weight, and promoting physical exercise.

Threshold for diagnosis of diabetes is based on the relationship between results of glucose tolerance tests, fasting glucose or HbA1c and complications such as retinal problems.[10] A fasting or random blood sugar is preferred over the glucose tolerance test, as they are more convenient for people.[10] HbA1c has the advantages that fasting is not required and results are more stable but has the disadvantage that the test is more costly than measurement of blood glucose.[50] It is estimated that 20% of people with diabetes in the United States do not realize that they have the disease.[10]


How to prevent type 2 diabetes: Six useful steps What are the risks factors for developing type 2 diabetes, and how can we prevent it? Some factors such as blood sugar levels, body weight, fiber intake, and stress can be controlled to some extent, but others, such as age and family history cannot. Find out more about reducing the risk of developing this condition. Read now
Although there are dozens of known type 1 genes, about half of the risk attributable to heredity comes from a handful that coordinate a part of the immune system called HLA, which helps the body recognize nefarious foreign invaders, such as viruses, bacteria, and parasites. Type 1 diabetes is an autoimmune disease, in which the body's own immune system destroys the cells in the pancreas that produce insulin, so perhaps it is no surprise that immunity genes are involved. Other autoimmune diseases share the HLA gene link, which may be why people with type 1 are more likely to develop additional auto­immune disorders.
Jump up ^ Santaguida PL, Balion C, Hunt D, Morrison K, Gerstein H, Raina P, Booker L, Yazdi H. "Diagnosis, Prognosis, and Treatment of Impaired Glucose Tolerance and Impaired Fasting Glucose". Summary of Evidence Report/Technology Assessment, No. 128. Agency for Healthcare Research and Quality. Archived from the original on 16 September 2008. Retrieved 20 July 2008.
Some cases of diabetes are caused by the body's tissue receptors not responding to insulin (even when insulin levels are normal, which is what separates it from type 2 diabetes); this form is very uncommon. Genetic mutations (autosomal or mitochondrial) can lead to defects in beta cell function. Abnormal insulin action may also have been genetically determined in some cases. Any disease that causes extensive damage to the pancreas may lead to diabetes (for example, chronic pancreatitis and cystic fibrosis). Diseases associated with excessive secretion of insulin-antagonistic hormones can cause diabetes (which is typically resolved once the hormone excess is removed). Many drugs impair insulin secretion and some toxins damage pancreatic beta cells. The ICD-10 (1992) diagnostic entity, malnutrition-related diabetes mellitus (MRDM or MMDM, ICD-10 code E12), was deprecated by the World Health Organization (WHO) when the current taxonomy was introduced in 1999.[53]
Recently, battery-operated insulin pumps have been developed that can be programmed to mimic normal insulin secretion more closely. A person wearing an insulin pump still must monitor blood sugar several times a day and adjust the dosage, and not all diabetic patients are motivated or suited to such vigilance. It is hoped that in the future an implantable or external pump system may be perfected, containing a glucose sensor. In response to data from the sensor the pump will automatically deliver insulin according to changing levels of blood glucose.
To treat diabetic retinopathy, a laser is used to destroy and prevent the recurrence of the development of these small aneurysms and brittle blood vessels. Approximately 50% of patients with diabetes will develop some degree of diabetic retinopathy after 10 years of diabetes, and 80% retinopathy after 15 years of the disease. Poor control of blood sugar and blood pressure further aggravates eye disease in diabetes.
Insulin is a hormone made by your pancreas that acts like a key to let blood sugar into the cells in your body for use as energy. If you have type 2 diabetes, cells don’t respond normally to insulin; this is called insulin resistance. Your pancreas makes more insulin to try to get cells to respond. Eventually your pancreas can’t keep up, and your blood sugar rises, setting the stage for prediabetes and type 2 diabetes. High blood sugar is damaging to the body and can cause other serious health problems, such as heart disease, vision loss, and kidney disease.
Diabetes can be looked for by testing a urine sample for sugar but for a diagnosis, a blood sample is required. This may be a simple measurement of the sugar level, usually fasting. Alternatively, a test called an HbA1c can be used which estimates sugar levels over the past couple of months. If someone has typical symptoms of diabetes, only a single abnormal test is required. Where there are no symptoms, a second confirmatory test is required. Sometimes, particularly in pregnancy, a glucose tolerance test is performed which involves blood tests before and 2 hours after a sugary drink.
They may need to take medications in order to keep glucose levels within a healthy range. Medications for type 2 diabetes are usually taken by mouth in the form of tablets and should always be taken around meal times and as prescribed by the doctor. However, if blood glucose is not controlled by oral medications, a doctor may recommend insulin injections.
People with full-blown type 2 diabetes are not able to use the hormone insulin properly, and have what’s called insulin resistance. Insulin is necessary for glucose, or sugar, to get from your blood into your cells to be used for energy. When there is not enough insulin — or when the hormone doesn’t function as it should — glucose accumulates in the blood instead of being used by the cells. This sugar accumulation may lead to the aforementioned complications.
×