Type 2 DM is primarily due to lifestyle factors and genetics.[45] A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[16] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11]

When the blood glucose level rises above 160 to 180 mg/dL, glucose spills into the urine. When the level of glucose in the urine rises even higher, the kidneys excrete additional water to dilute the large amount of glucose. Because the kidneys produce excessive urine, people with diabetes urinate large volumes frequently (polyuria). The excessive urination creates abnormal thirst (polydipsia). Because excessive calories are lost in the urine, people may lose weight. To compensate, people often feel excessively hungry.
Diet, exercise, and education are the cornerstones of treatment of diabetes and often the first recommendations for people with mild diabetes. Weight loss is important for people who are overweight. People who continue to have elevated blood glucose levels despite lifestyle changes, or have very high blood glucose levels and people with type 1 diabetes (no matter their blood glucose levels) also require drugs.
It’s not uncommon for patients to suddenly feel unsteady and immediately need to reach for carbs, says Marjorie Cypress, a nurse practitioner at an endocrinology clinic in Albuquerque, New Mexico, and 2014 president of health care and education for the American Diabetes Association. “When you have high blood sugar, your body has a problem regulating its glucose,” she explains. “If you’ve eaten something high in carbohydrates, your body shoots out a little too much insulin, and your glucose drops quickly. This makes you feel shaky, and you tend to crave carbs or sugar. This can lead to a vicious cycle.” These are the best foods for someone on a diabetic diet.
Constant advances are being made in development of new oral medications for persons with diabetes. In 2003, a drug called Metaglip combining glipizide and metformin was approved in a dingle tablet. Along with diet and exercise, the drug was used as initial therapy for Type 2 diabetes. Another drug approved by the U.S. Food and Drug Administration (FDA) combines metformin and rosiglitazone (Avandia), a medication that increases muscle cells' sensitivity to insulin. It is marketed under the name Avandamet. So many new drugs are under development that it is best to stay in touch with a physician for the latest information; physicians can find the best drug, diet and exercise program to fit an individual patient's need.
Screening for undiagnosed T2DM is recommended at the first prenatal visit in women with above risk factors, using standard diagnostic method criteria. Screening for gestational diabetes (GDM) at 24-28 wk of gestation is recommended in women who do not have previous history of diabetes, as GDM remains asymptomatic11. A history of GDM carries a high risk for developing diabetes.
Excess glucose in the blood can damage small blood vessels in the nerves causing a tingling sensation or pain in the fingers, toes and limbs. Nerves that lie outside of the central nervous system may also be damaged, which is referred to as peripheral neuropathy. If nerves of the gastrointestinal tract are affected, this may cause vomiting, constipation and diarrhea.
Oral medications are available to lower blood glucose in Type II diabetics. In 1990, 23.4 outpatient prescriptions for oral antidiabetic agents were dispensed. By 2001, the number had increased to 91.8 million prescriptions. Oral antidiabetic agents accounted for more than $5 billion dollars in worldwide retail sales per year in the early twenty-first century and were the fastest-growing segment of diabetes drugs. The drugs first prescribed for Type II diabetes are in a class of compounds called sulfonylureas and include tolbutamide, tolazamide, acetohexamide, and chlorpropamide. Newer drugs in the same class are now available and include glyburide, glimeperide, and glipizide. How these drugs work is not well understood, however, they seem to stimulate cells of the pancreas to produce more insulin. New medications that are available to treat diabetes include metformin, acarbose, and troglitizone. The choice of medication depends in part on the individual patient profile. All drugs have side effects that may make them inappropriate for particular patients. Some for example, may stimulate weight gain or cause stomach irritation, so they may not be the best treatment for someone who is already overweight or who has stomach ulcers. Others, like metformin, have been shown to have positive effects such as reduced cardiovascular mortality, but but increased risk in other situations. While these medications are an important aspect of treatment for Type II diabetes, they are not a substitute for a well planned diet and moderate exercise. Oral medications have not been shown effective for Type I diabetes, in which the patient produces little or no insulin.
Most pediatric patients with diabetes have type 1 diabetes mellitus (T1DM) and a lifetime dependence on exogenous insulin. Diabetes mellitus (DM) is a chronic metabolic disorder caused by an absolute or relative deficiency of insulin, an anabolic hormone. Insulin is produced by the beta cells of the islets of Langerhans located in the pancreas, and the absence, destruction, or other loss of these cells results in type 1 diabetes (insulin-dependent diabetes mellitus [IDDM]). A possible mechanism for the development of type 1 diabetes is shown in the image below. (See Etiology.)

Insulin-dependent diabetes mellitus is believed to result from autoimmune, environmental, and/or genetic factors. Whatever the cause, the end result is destruction of insulin-producing pancreatic beta cells, a dramatic decrease in the secretion of insulin, and hyperglycemia. Non-insulin-dependent diabetes mellitus is presumably heterogeneous in origin. It is associated with older age, obesity, a family history of diabetes, and ethnicity (genetic components). The vast majority of those with non-insulin-dependent diabetes are overweight Kahn (2003). This form of the disorder has a much slower rate of progression than insulin-dependent diabetes. Over time the ability to respond to insulin decreases, resulting in increased levels of blood glucose. The pancreatic secretion of insulin increases in an attempt to compensate for the elevated levels of glucose. If the condition is untreated, the pancreatic production of insulin decreases and may even cease.
A study by Dabelea et al found that in teenagers and young adults in whom diabetes mellitus had been diagnosed during childhood or adolescence, diabetes-related complications and comorbidities—including diabetic kidney disease, retinopathy, and peripheral neuropathy (but not arterial stiffness or hypertension)—were more prevalent in those with type 2 diabetes than in those with type 1 disease. [44]

One of the key factors in Joslin’s treatment of diabetes is tight blood glucose control, so be certain that your treatment helps get your blood glucose readings as close to normal as safely possible. Patients should discuss with their doctors what their target blood glucose range is. It is also important to determine what your goal is for A1C readings (a test that determines how well your diabetes is controlled over the past 2-3 months). By maintaining blood glucose in the desired range, you’ll likely avoid many of the complications some people with diabetes face.
People with diabetes either don't make insulin or their body's cells no longer are able to use the insulin, leading to high blood sugars. By definition, diabetes is having a blood glucose level of greater than or equal to126 milligrams per deciliter (mg/dL) after an 8-hour fast (not eating anything), or by having a non-fasting glucose level greater than or equal to 200 mg/dL along with symptoms of diabetes, or a glucose level of greater than or equal to 200 mg/dL on a 2-hour glucose tolerance test, or an A1C greater than or equal to 6.5%. Unless the person is having obvious symptoms of diabetes or is in a diabetic crisis, the diagnosis must be confirmed with a repeat test.
Over recent decades, and particularly in the past five years, researchers have found dozens of genes with links to diabetes. The count stands at about 50 genes for type 1 and 38 for type 2. The numbers have risen quickly in recent years because of advances in the gene-sequencing technology used to conduct genome-wide association studies. This technique involves taking the genetic compositions of a group of people with a disease and comparing them en masse to the genomes of people who don't have the disease.
Type 2 diabetes is mainly caused by insulin resistance. This means no matter how much or how little insulin is made, the body can't use it as well as it should. As a result, glucose can't be moved from the blood into cells. Over time, the excess sugar in the blood gradually poisons the pancreas causing it to make less insulin and making it even more difficult to keep blood glucose under control.
Excessive hunger goes hand-in-hand with fatigue and cell starvation. Because the cells are resistant to the body's insulin, glucose remains in the blood. The cells are then unable to gain access to glucose, which can trigger hunger hormones that tell the brain that you are hungry. Excessive eating can complicate things further by causing blood sugars to increase.
Supporting evidence for Shulman's theory comes from observations about a rare genetic illness called lipodystrophy. People with lipodystrophy can't make fat tissue, which is where fat should properly be stored. These thin people also develop severe insulin resistance and type 2 diabetes. "They have fat stored in places it doesn't belong," like the liver and muscles, says Shulman. "When we treat them . . . we melt the fat away, reversing insulin resistance and type 2 diabetes." Shulman's theory also suggests why some people who carry extra fat don't get type 2. "There are some individuals who store fat [under the skin] who have relatively normal insulin sensitivity, a so-called fit fat individual," he says. Because of the way their bodies store fat, he believes, they don't get diabetes.

A 2018 study suggested that three types should be abandoned as too simplistic.[57] It classified diabetes into five subgroups, with what is typically described as type 1 and autoimmune late-onset diabetes categorized as one group, whereas type 2 encompasses four categories. This is hoped to improve diabetes treatment by tailoring it more specifically to the subgroups.[58]
Healthy lifestyle choices can help you prevent type 2 diabetes. Even if you have diabetes in your family, diet and exercise can help you prevent the disease. If you've already received a diagnosis of diabetes, you can use healthy lifestyle choices to help prevent complications. And if you have prediabetes, lifestyle changes can slow or halt the progression from prediabetes to diabetes.
Type 2 diabetes is due to insufficient insulin production from beta cells in the setting of insulin resistance.[13] Insulin resistance, which is the inability of cells to respond adequately to normal levels of insulin, occurs primarily within the muscles, liver, and fat tissue.[44] In the liver, insulin normally suppresses glucose release. However, in the setting of insulin resistance, the liver inappropriately releases glucose into the blood.[10] The proportion of insulin resistance versus beta cell dysfunction differs among individuals, with some having primarily insulin resistance and only a minor defect in insulin secretion and others with slight insulin resistance and primarily a lack of insulin secretion.[13]
In this health topic, we discuss hyperglycemic hyperosmolar nonketotic syndrome (HHNS), an extremely serious complication that can lead to diabetic coma and even death in type 2 diabetes. This serious condition occurs when the blood sugar gets too high and the body becomes severely dehydrated. To prevent HHNS and diabetic coma in type 2 diabetes, check your blood sugar regularly as recommended by your health care provider; check your blood sugar more frequently when you are sick, drink plenty of fluids, and watch for signs of dehydration.
×