People usually develop type 2 diabetes after the age of 40 years, although people of South Asian origin are at an increased risk of the condition and may develop diabetes from the age of 25 onwards. The condition is also becoming increasingly common among children and adolescents across all populations. Type 2 diabetes often develops as a result of overweight, obesity and lack of physical activity and diabetes prevalence is on the rise worldwide as these problems become more widespread.
According to the Mayo Clinic, doctors may use other tests to diagnose diabetes. For example, they may conduct a fasting blood glucose test, which is a blood glucose test done after a night of fasting. While a fasting blood sugar level of less than 100 milligrams per deciliter (mg/dL) is normal, one that is between 100 to 125 mg/dL signals prediabetes, and a reading that reaches 126 mg/dL on two separate occasions means you have diabetes.

DM affects at least 16 million U.S. residents, ranks seventh as a cause of death in the United States, and costs the national economy over $100 billion yearly. The striking increase in the prevalence of DM in the U.S. during recent years has been linked to a rise in the prevalence of obesity. About 95% of those with DM have Type 2, in which the pancreatic beta cells retain some insulin-producing potential, and the rest have Type 1, in which exogenous insulin is required for long-term survival. In Type 1 DM, which typically causes symptoms before age 25, an autoimmune process is responsible for beta cell destruction. Type 2 DM is characterized by insulin resistance in peripheral tissues as well as a defect in insulin secretion by beta cells. Insulin regulates carbohydrate metabolism by mediating the rapid transport of glucose and amino acids from the circulation into muscle and other tissue cells, by promoting the storage of glucose in liver cells as glycogen, and by inhibiting gluconeogenesis. The normal stimulus for the release of insulin from the pancreas is a rise in the concentration of glucose in circulating blood, which typically occurs within a few minutes after a meal. When such a rise elicits an appropriate insulin response, so that the blood level of glucose falls again as it is taken into cells, glucose tolerance is said to be normal. The central fact in DM is an impairment of glucose tolerance of such a degree as to threaten or impair health. Long recognized as an independent risk factor for cardiovascular disease, DM is often associated with other risk factors, including disorders of lipid metabolism (elevation of very-low-density lipoprotein cholesterol and triglycerides and depression of high-density lipoprotein cholesterol), obesity, hypertension, and impairment of renal function. Sustained elevation of serum glucose and triglycerides aggravates the biochemical defect inherent in DM by impairing insulin secretion, insulin-mediated glucose uptake by cells, and hepatic regulation of glucose output. Long-term consequences of the diabetic state include macrovascular complications (premature or accelerated atherosclerosis with resulting coronary, cerebral, and peripheral vascular insufficiency) and microvascular complications (retinopathy, nephropathy, and neuropathy). It is estimated that half those with DM already have some complications when the diagnosis is made. The American Diabetes Association (ADA) recommends screening for DM for people with risk factors such as obesity, age 45 years or older, family history of DM, or history of gestational diabetes. If screening yields normal results, it should be repeated every 3 years. The diagnosis of DM depends on measurement of plasma glucose concentration. The diagnosis is confirmed when any two measurements of plasma glucose performed on different days yield levels at or above established thresholds: in the fasting state, 126 mg/dL (7 mmol/L); 2 hours postprandially (after a 75-g oral glucose load) or at random, 200 mg/dL (11.1 mmol/L). A fasting plasma glucose of 100-125 mg/dL (5.5-6.9 mmol/L) or a 2-hour postprandial glucose of 140-199 mg/dL (7.8-11 mmol/L) is defined as impaired glucose tolerance. People with impaired glucose tolerance are at higher risk of developing DM within 10 years. For such people, lifestyle modification such as weight reduction and exercise may prevent or postpone the onset of frank DM. Current recommendations for the management of DM emphasize education and individualization of therapy. Controlled studies have shown that rigorous maintenance of plasma glucose levels as near to normal as possible at all times substantially reduces the incidence and severity of long-term complications, particularly microvascular complications. Such control involves limitation of dietary carbohydrate and saturated fat; monitoring of blood glucose, including self-testing by the patient and periodic determination of glycosylated hemoglobin; and administration of insulin (particularly in Type 1 DM), drugs that stimulate endogenous insulin production (in Type 2 DM), or both. The ADA recommends inclusion of healthful carbohydrate-containing foods such as whole grains, fruits, vegetables, and low-fat milk in a diabetic diet. Restriction of dietary fat to less than 10% of total calories is recommended for people with diabetes, as for the general population. Further restriction may be appropriate for those with heart disease or elevated cholesterol or triglyceride levels. The ADA advises that high-protein, low-carbohydrate diets have no particular merit in long-term weight control or in maintenance of a normal plasma glucose level in DM. Pharmaceutical agents developed during the 1990s improve control of DM by enhancing responsiveness of cells to insulin, counteracting insulin resistance, and reducing postprandial carbohydrate absorption. Tailor-made insulin analogues produced by recombinant DNA technology (for example, lispro, aspart, and glargine insulins) have broadened the range of pharmacologic properties and treatment options available. Their use improves both short-term and long-term control of plasma glucose and is associated with fewer episodes of hypoglycemia. SEE ALSO insulin resistance

Type 1 and type 2 diabetes were identified as separate conditions for the first time by the Indian physicians Sushruta and Charaka in 400–500 CE with type 1 associated with youth and type 2 with being overweight.[108] The term "mellitus" or "from honey" was added by the Briton John Rolle in the late 1700s to separate the condition from diabetes insipidus, which is also associated with frequent urination.[108] Effective treatment was not developed until the early part of the 20th century, when Canadians Frederick Banting and Charles Herbert Best isolated and purified insulin in 1921 and 1922.[108] This was followed by the development of the long-acting insulin NPH in the 1940s.[108]
Exercise. A program of regular exercise gives anyone a sense of good health and well-being; for persons with diabetes it gives added benefits by helping to control blood glucose levels, promoting circulation to peripheral tissues, and strengthening the heart beat. In addition, there is evidence that exercise increases the number of insulin receptor sites on the surface of cells and thus facilitates the metabolism of glucose. Many specialists in diabetes consider exercise so important in the management of diabetes that they prescribe rather than suggest exercise.

The word diabetes (/ˌdaɪ.əˈbiːtiːz/ or /ˌdaɪ.əˈbiːtɪs/) comes from Latin diabētēs, which in turn comes from Ancient Greek διαβήτης (diabētēs), which literally means "a passer through; a siphon".[111] Ancient Greek physician Aretaeus of Cappadocia (fl. 1st century CE) used that word, with the intended meaning "excessive discharge of urine", as the name for the disease.[112][113] Ultimately, the word comes from Greek διαβαίνειν (diabainein), meaning "to pass through,"[111] which is composed of δια- (dia-), meaning "through" and βαίνειν (bainein), meaning "to go".[112] The word "diabetes" is first recorded in English, in the form diabete, in a medical text written around 1425.

Type 1 diabetes is partly inherited, with multiple genes, including certain HLA genotypes, known to influence the risk of diabetes. In genetically susceptible people, the onset of diabetes can be triggered by one or more environmental factors,[41] such as a viral infection or diet. Several viruses have been implicated, but to date there is no stringent evidence to support this hypothesis in humans.[41][42] Among dietary factors, data suggest that gliadin (a protein present in gluten) may play a role in the development of type 1 diabetes, but the mechanism is not fully understood.[43][44]

A fingerstick glucose test is most often used to monitor blood glucose. Most blood glucose monitoring devices (glucose meters) use a drop of blood obtained by pricking the tip of the finger with a small lancet. The lancet holds a tiny needle that can be jabbed into the finger or placed in a spring-loaded device that easily and quickly pierces the skin. Most people find that the pricking causes only minimal discomfort. Then, a drop of blood is placed on a reagent strip. The strip contains chemicals that undergo changes depending on the glucose level. The glucose meter reads the changes in the test strip and reports the result on a digital display. Some devices allow the blood sample to be obtained from other sites, such as the palm, forearm, upper arm, thigh, or calf. Home glucose meters are smaller than a deck of cards.
Studies in type 1 patients have shown that in intensively treated patients, diabetic eye disease decreased by 76%, kidney disease decreased by 54%, and nerve disease decreased by 60%. More recently the EDIC trial has shown that type 1 diabetes is also associated with increased heart disease, similar to type 2 diabetes. However, the price for aggressive blood sugar control is a two to three fold increase in the incidence of abnormally low blood sugar levels (caused by the diabetes medications). For this reason, tight control of diabetes to achieve glucose levels between 70 to120 mg/dl is not recommended for children under 13 years of age, patients with severe recurrent hypoglycemia, patients unaware of their hypoglycemia, and patients with far advanced diabetes complications. To achieve optimal glucose control without an undue risk of abnormally lowering blood sugar levels, patients with type 1 diabetes must monitor their blood glucose at least four times a day and administer insulin at least three times per day. In patients with type 2 diabetes, aggressive blood sugar control has similar beneficial effects on the eyes, kidneys, nerves and blood vessels.
Taking the drugs used to treat diabetes, particularly insulin, may be difficult for some older people. For those with vision problems or other problems that make accurately filling a syringe difficult, a caregiver can prepare the syringes ahead of time and store them in the refrigerator. People whose insulin dose is stable may purchase pre-filled syringes. Prefilled insulin pen devices may be easier for people with physical limitations. Some of these devices have large numbers and easy-to-turn dials.
The prognosis of diabetes is related to the extent to which the condition is kept under control to prevent the development of the complications described in the preceding sections. Some of the more serious complications of diabetes such as kidney failure and cardiovascular disease, can be life-threatening. Acute complications such as diabetic ketoacidosis can also be life-threatening. As mentioned above, aggressive control of blood sugar levels can prevent or delay the onset of complications, and many people with diabetes lead long and full lives.
Random blood sugar test. A blood sample will be taken at a random time. Blood sugar values are expressed in milligrams per deciliter (mg/dL) or millimoles per liter (mmol/L). Regardless of when you last ate, a random blood sugar level of 200 mg/dL (11.1 mmol/L) or higher suggests diabetes, especially when coupled with any of the signs and symptoms of diabetes, such as frequent urination and extreme thirst.
On behalf of the millions of Americans who live with or are at risk for diabetes, we are committed to helping you understand this chronic disease. Help us set the record straight and educate the world about diabetes and its risk factors by sharing the common questions and answers below. If you're new to type 2 diabetes, join our Living With Type 2 Diabetes program to get more facts.
The good news is that if you have diabetes, you have a great amount of control in managing your disease. Although it can be difficult to manage a disease on a daily basis, the resources and support for people with diabetes is endless. It's important for you to receive as much education as possible so that you can take advantage of all the good information that is out there (and weed out the bad).
Exercise. A program of regular exercise gives anyone a sense of good health and well-being; for persons with diabetes it gives added benefits by helping to control blood glucose levels, promoting circulation to peripheral tissues, and strengthening the heart beat. In addition, there is evidence that exercise increases the number of insulin receptor sites on the surface of cells and thus facilitates the metabolism of glucose. Many specialists in diabetes consider exercise so important in the management of diabetes that they prescribe rather than suggest exercise.
Weight loss surgery in those who are obese is an effective measure to treat diabetes.[101] Many are able to maintain normal blood sugar levels with little or no medication following surgery[102] and long-term mortality is decreased.[103] There however is some short-term mortality risk of less than 1% from the surgery.[104] The body mass index cutoffs for when surgery is appropriate are not yet clear.[103] It is recommended that this option be considered in those who are unable to get both their weight and blood sugar under control.[105][106]
Alternatively, if you hit it really hard for 20 minutes or so, you may never enter the fat burning phase of exercise. Consequently, your body becomes more efficient at storing sugar (in the form of glycogen) in your liver and muscles, where it is needed, as glycogen is the muscles’ primary fuel source. If your body is efficient at storing and using of glycogen, it means that it is not storing fat.
The information provided does not constitute a diagnosis of your condition. You should consult a medical practitioner or other appropriate health care professional for a physical exmanication, diagnosis and formal advice. Health24 and the expert accept no responsibility or liability for any damage or personal harm you may suffer resulting from making use of this content.
In the United States alone, more than 8 million people have undiagnosed diabetes, according to the American Diabetes Association. But you don't need to become a statistic. Understanding possible diabetes symptoms can lead to early diagnosis and treatment — and a lifetime of better health. If you're experiencing any of the following diabetes signs and symptoms, see your doctor.

The roots of type 2 diabetes remain in insulin resistance and pancreatic failure, and the blame for the current diabetes epidemic lies in an overall dietary pattern emphasizing meat, dairy products, and fatty foods, aided and abetted by sugary foods and beverages, rather than simply in sugar alone. A diet emphasizing vegetables, fruits, whole grains, and legumes and avoiding animal products helps prevent diabetes and improves its management when it has been diagnosed. 
Insulin-dependent diabetes mellitus is believed to result from autoimmune, environmental, and/or genetic factors. Whatever the cause, the end result is destruction of insulin-producing pancreatic beta cells, a dramatic decrease in the secretion of insulin, and hyperglycemia. Non-insulin-dependent diabetes mellitus is presumably heterogeneous in origin. It is associated with older age, obesity, a family history of diabetes, and ethnicity (genetic components). The vast majority of those with non-insulin-dependent diabetes are overweight Kahn (2003). This form of the disorder has a much slower rate of progression than insulin-dependent diabetes. Over time the ability to respond to insulin decreases, resulting in increased levels of blood glucose. The pancreatic secretion of insulin increases in an attempt to compensate for the elevated levels of glucose. If the condition is untreated, the pancreatic production of insulin decreases and may even cease.
Glucose is a simple sugar found in food. Glucose is an essential nutrient that provides energy for the proper functioning of the body cells. Carbohydrates are broken down in the small intestine and the glucose in digested food is then absorbed by the intestinal cells into the bloodstream, and is carried by the bloodstream to all the cells in the body where it is utilized. However, glucose cannot enter the cells alone and needs insulin to aid in its transport into the cells. Without insulin, the cells become starved of glucose energy despite the presence of abundant glucose in the bloodstream. In certain types of diabetes, the cells' inability to utilize glucose gives rise to the ironic situation of "starvation in the midst of plenty". The abundant, unutilized glucose is wastefully excreted in the urine.
Diabetes insipidus is considered very rare in less 20,000 cases diagnosed per year. Diabetes mellitus is more common, with type 2 diabetes being more common than type 1. There are more than 3 million cases of type 2 diabetes. Unlike diabetes mellitus, diabetes insipidus is not treated by controlling insulin levels. Depending on your symptoms, your doctor may prescribe a low-salt diet, hormone therapy, or have you increase your water intake. 
Diabetes has been coined the “silent killer” because the symptoms are so easy to miss. Over 24 million people in America have diabetes, so this is no tiny issue. Kids years ago hardly ever knew another child with diabetes, but such is no longer the case. Approximately 1.25 million children in the United States living with diabetes, which is very telling for state of health in America in 2016 when children are having to endure a medical lifestyle at such a young age.
Jump up ^ Palmer, Suetonia C.; Mavridis, Dimitris; Nicolucci, Antonio; Johnson, David W.; Tonelli, Marcello; Craig, Jonathan C.; Maggo, Jasjot; Gray, Vanessa; De Berardis, Giorgia; Ruospo, Marinella; Natale, Patrizia; Saglimbene, Valeria; Badve, Sunil V.; Cho, Yeoungjee; Nadeau-Fredette, Annie-Claire; Burke, Michael; Faruque, Labib; Lloyd, Anita; Ahmad, Nasreen; Liu, Yuanchen; Tiv, Sophanny; Wiebe, Natasha; Strippoli, Giovanni F.M. (19 July 2016). "Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes". JAMA: the Journal of the American Medical Association. 316 (3): 313–24. doi:10.1001/jama.2016.9400. PMID 27434443.
Pay attention if you find yourself feeling drowsy or lethargic; pain or numbness in your extremities; vision changes; fruity or sweet-smelling breath which is one of the symptoms of high ketones; and experiencing nausea or vomiting—as these are additional signs that something is not right. If there’s any question, see your doctor immediately to ensure that your blood sugar levels are safe and rule out diabetes.
Normally, blood glucose levels are tightly controlled by insulin, a hormone produced by the pancreas. Insulin lowers the blood glucose level. When the blood glucose elevates (for example, after eating food), insulin is released from the pancreas to normalize the glucose level by promoting the uptake of glucose into body cells. In patients with diabetes, the absence of insufficient production of or lack of response to insulin causes hyperglycemia. Diabetes is a chronic medical condition, meaning that although it can be controlled, it lasts a lifetime.
Can you “exercise your way” out of this problem? Sometimes you can; however, the key is exercising properly. For younger patients, it is best to exercise briefly and intensely. Within the first 20 minutes of intense exercise, your body burns its sugar stores, which are hanging out in liver and muscle again. After that, you start burning fat. Although this sounds good; and to some extent it is, if you spend hours running or exercising excessively, you train your body to burn fat efficiently, which subsequently lead to also training your body to store fat efficiently.
You can develop type 2 diabetes at any age, even during childhood. However, type 2 diabetes occurs most often in middle-aged and older people. You are more likely to develop type 2 diabetes if you are age 45 or older, have a family history of diabetes, or are overweight or obese. Diabetes is more common in people who are African American, Hispanic/Latino, American Indian, Asian American, or Pacific Islander.

Hyperglycemic hyperosmolar nonketotic syndrome (HHNS). Signs and symptoms of this life-threatening condition include a blood sugar reading higher than 600 mg/dL (33.3 mmol/L), dry mouth, extreme thirst, fever greater than 101 F (38 C), drowsiness, confusion, vision loss, hallucinations and dark urine. Your blood sugar monitor may not be able to give you an exact reading at such high levels and may instead just read "high."

Culturally appropriate education may help people with type 2 diabetes control their blood sugar levels, for up to 24 months.[89] If changes in lifestyle in those with mild diabetes has not resulted in improved blood sugars within six weeks, medications should then be considered.[23] There is not enough evidence to determine if lifestyle interventions affect mortality in those who already have DM2.[62]
Large, population-based studies in China, Finland and USA have recently demonstrated the feasibility of preventing, or delaying, the onset of diabetes in overweight subjects with mild glucose intolerance (IGT). The studies suggest that even moderate reduction in weight and only half an hour of walking each day reduced the incidence of diabetes by more than one half.
Several other signs and symptoms can mark the onset of diabetes although they are not specific to the disease. In addition to the known ones above, they include blurred vision, headache, fatigue, slow healing of cuts, and itchy skin. Prolonged high blood glucose can cause glucose absorption in the lens of the eye, which leads to changes in its shape, resulting in vision changes. Long-term vision loss can also be caused by diabetic retinopathy. A number of skin rashes that can occur in diabetes are collectively known as diabetic dermadromes.[23]
There is evidence that certain emotions can promote type 2 diabetes. A recent study found that depression seems to predispose people to diabetes. Other research has tied emotional stress to diabetes, though the link hasn't been proved. Researchers speculate that the emotional connection may have to do with the hormone cortisol, which floods the body during periods of stress. Cortisol sends glucose to the blood, where it can fuel a fight-or-flight response, but overuse of this system may lead to dysfunction.

Jump up ^ O'Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX, Anderson JL, Jacobs AK, Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Yancy CW (January 2013). "2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines". Circulation. 127 (4): e362–425. doi:10.1161/CIR.0b013e3182742cf6. PMID 23247304.
Type 2 DM is primarily due to lifestyle factors and genetics.[45] A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[16] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11]

Though it may be transient, untreated GDM can damage the health of the fetus or mother. Risks to the baby include macrosomia (high birth weight), congenital heart and central nervous system abnormalities, and skeletal muscle malformations. Increased levels of insulin in a fetus's blood may inhibit fetal surfactant production and cause infant respiratory distress syndrome. A high blood bilirubin level may result from red blood cell destruction. In severe cases, perinatal death may occur, most commonly as a result of poor placental perfusion due to vascular impairment. Labor induction may be indicated with decreased placental function. A caesarean section may be performed if there is marked fetal distress or an increased risk of injury associated with macrosomia, such as shoulder dystocia.[51]

In addition to learning about diabetes itself, older people may have to learn how to fit management of diabetes in with their management of other disorders. Learning about how to avoid complications, such as dehydration, skin breakdown, and circulation problems, and to manage factors that can contribute to complications of diabetes, such as high blood pressure and high cholesterol levels, is especially important. Such problems become more common as people age, whether they have diabetes or not.

A number of studies have looked for relationships between sugar and diabetes risk. A 2017 meta-analysis, based on nine reports of 15 cohort studies including 251,261 participants, found no significant effect of total sugars on the risk of developing type 2 diabetes.7 Those consuming the most sugar actually had a 9 percent lower risk of developing diabetes, compared with those consuming the least sugar, although the difference was not statistically significant (meaning that it could have been a chance result). Similarly, fructose was not significantly associated with diabetes risk. Sucrose appeared to have a significant protective association. Those consuming the most sucrose had 11 percent less risk of developing type 2 diabetes, compared with those consuming the least.
Dr. Erica Oberg, ND, MPH, received a BA in anthropology from the University of Colorado, her doctorate of naturopathic medicine (ND) from Bastyr University, and a masters of public health (MPH) in health services research from the University of Washington. She completed her residency at the Bastyr Center for Natural Health in ambulatory primary care and fellowship training at the Health Promotion Research Center at the University of Washington.
Often people don't experience symptoms of diabetes until their blood sugars are very high. Symptoms of diabetes include: increased thirst, increased urination, increased hunger, extreme fatigues, numbness and tingling in the extremities (hands and feet), cuts and wounds that are slow to heal, and blurred vision. Some people also experience other less common symptoms including weight loss, dry itchy skin, increased yeast infections, erectile dysfunction, and acanthosis nigricans (thick, "velvety" patches found in the folds or creases of skin, such as the neck, that is indicative of insulin resistance).
Diabetes mellitus is a condition in which the body does not produce enough of the hormone insulin, resulting in high levels of sugar in the bloodstream. There are many different types of diabetes; the most common are type 1 and type 2 diabetes, which are covered in this article. Gestational diabetes occurs during the second half of pregnancy and is covered in a separate article. Diabetes can also be caused by disease or damage to the pancreas, Cushing's syndrome, acromegaly and there are also some rare genetic forms.
Oral Agents. Oral antidiabetic drugs (see hypoglycemic agents) are sometimes prescribed for patients with type 2 diabetes who cannot control their blood glucose with diet and exercise. These are not oral forms of insulin; they are sulfonylureas, chemically related to the sulfonamide antibiotics. Patients receiving them should be taught that the drug they are taking does not eliminate the need for a diet and exercise program. Only the prescribed dosage should be taken; it should never be increased to make up for dietary indiscretions or discontinued unless authorized by the physician.

Doctors can monitor treatment using a blood test called hemoglobin A1C. When the blood glucose levels are high, changes occur in hemoglobin, the protein that carries oxygen in the blood. These changes are in direct proportion to the blood glucose levels over an extended period. The higher the hemoglobin A1C level, the higher the person's glucose levels have been. Thus, unlike the blood glucose measurement, which reveals the level at a particular moment, the hemoglobin A1Cmeasurement demonstrates whether the blood glucose levels have been controlled over the previous few months.

Our bodies break down the foods we eat into glucose and other nutrients we need, which are then absorbed into the bloodstream from the gastrointestinal tract. The glucose level in the blood rises after a meal and triggers the pancreas to make the hormone insulin and release it into the bloodstream. But in people with diabetes, the body either can't make or can't respond to insulin properly.
Dr. Charles "Pat" Davis, MD, PhD, is a board certified Emergency Medicine doctor who currently practices as a consultant and staff member for hospitals. He has a PhD in Microbiology (UT at Austin), and the MD (Univ. Texas Medical Branch, Galveston). He is a Clinical Professor (retired) in the Division of Emergency Medicine, UT Health Science Center at San Antonio, and has been the Chief of Emergency Medicine at UT Medical Branch and at UTHSCSA with over 250 publications.