You may be able to manage your type 2 diabetes with healthy eating and being active, or your doctor may prescribe insulin, other injectable medications, or oral diabetes medicines to help control your blood sugar and avoid complications. You’ll still need to eat healthy and be active if you take insulin or other medicines. It’s also important to keep your blood pressure and cholesterol under control and get necessary screening tests.
All children with type 1 diabetes mellitus require insulin therapy. Most require 2 or more injections of insulin daily, with doses adjusted on the basis of self-monitoring of blood glucose levels. Insulin replacement is accomplished by giving a basal insulin and a preprandial (premeal) insulin. The basal insulin is either long-acting (glargine or detemir) or intermediate-acting (NPH). The preprandial insulin is either rapid-acting (lispro, aspart, or glulisine) or short-acting (regular).
The genes identified so far in people with type 2 include many that affect the insulin-producing beta cells of the pancreas, says Craig Hanis, PhD, a professor at the Human Genetics Center at the University of Texas Health Science Center in Houston. And yet he emphasizes that why people get type 2 isn't at all clear yet: "What it tells us is that diabetes is a complicated disease."
Doctors may recommend one or more types of medications to help control diabetes. While taking medications, it's important for people with diabetes to regularly test their blood glucose levels at home. There are many different blood glucose meters available on the market. Speak to a doctor or pharmacist about these meters to help you select the best meter for your needs.
The American Diabetes Association recommends that blood sugars be 80mg/dL-130mg/dL before meals and less than or equal to 180mg/dL two hours after meals. Blood sugar targets are individualized based on a variety of factors such as age, length of diagnosis, if you have other health issues, etc. For example, if you are an elderly person, your targets maybe a bit higher than someone else. Ask your physician what targets are right for you.

observations The onset of type 1 diabetes mellitus is sudden in children. Type 2 diabetes often begins insidiously. Characteristically the course is progressive and includes polyuria, polydipsia, weight loss, polyphagia, hyperglycemia, and glycosuria. The eyes, kidneys, nervous system, skin, and circulatory system may be affected by the long-term complications of either type of diabetes; infections are common; and atherosclerosis often develops. In type 1 diabetes mellitus, when no endogenous insulin is being secreted, ketoacidosis is a constant danger. The diagnosis is confirmed by fasting plasma glucose and history.
In general, women live longer than men do because they have a lower risk of heart disease, but when women develop diabetes, their risk for heart disease skyrockets, and death by heart failure is more likely in women than in men. Another study also found that in people with diabetes, heart attacks are more often fatal for women than they are for men. Other examples of how diabetes affects women differently than men are:
Monogenic diabetes is caused by mutations, or changes, in a single gene. These changes are usually passed through families, but sometimes the gene mutation happens on its own. Most of these gene mutations cause diabetes by making the pancreas less able to make insulin. The most common types of monogenic diabetes are neonatal diabetes and maturity-onset diabetes of the young (MODY). Neonatal diabetes occurs in the first 6 months of life. Doctors usually diagnose MODY during adolescence or early adulthood, but sometimes the disease is not diagnosed until later in life.
Most cases (95%) of type 1 diabetes mellitus are the result of environmental factors interacting with a genetically susceptible person. This interaction leads to the development of autoimmune disease directed at the insulin-producing cells of the pancreatic islets of Langerhans. These cells are progressively destroyed, with insulin deficiency usually developing after the destruction of 90% of islet cells.

If the amount of insulin available is insufficient, or if cells respond poorly to the effects of insulin (insulin insensitivity or insulin resistance), or if the insulin itself is defective, then glucose will not be absorbed properly by the body cells that require it, and it will not be stored appropriately in the liver and muscles. The net effect is persistently high levels of blood glucose, poor protein synthesis, and other metabolic derangements, such as acidosis.[60]


Type 2 diabetes is often treated with oral medication because many people with this type of diabetes make some insulin on their own. The pills people take to control type 2 diabetes do not contain insulin. Instead, medications such as metformin, sulfonylureas, alpha-glucosidase inhibitors and many others are used to make the insulin that the body still produces more effective.
Insulin is a hormone that is produced by specialized cells (beta cells) of the pancreas. (The pancreas is a deep-seated organ in the abdomen located behind the stomach.) In addition to helping glucose enter the cells, insulin is also important in tightly regulating the level of glucose in the blood. After a meal, the blood glucose level rises. In response to the increased glucose level, the pancreas normally releases more insulin into the bloodstream to help glucose enter the cells and lower blood glucose levels after a meal. When the blood glucose levels are lowered, the insulin release from the pancreas is turned down. It is important to note that even in the fasting state there is a low steady release of insulin than fluctuates a bit and helps to maintain a steady blood sugar level during fasting. In normal individuals, such a regulatory system helps to keep blood glucose levels in a tightly controlled range. As outlined above, in patients with diabetes, the insulin is either absent, relatively insufficient for the body's needs, or not used properly by the body. All of these factors cause elevated levels of blood glucose (hyperglycemia).
It’s not uncommon for patients to suddenly feel unsteady and immediately need to reach for carbs, says Marjorie Cypress, a nurse practitioner at an endocrinology clinic in Albuquerque, New Mexico, and 2014 president of health care and education for the American Diabetes Association. “When you have high blood sugar, your body has a problem regulating its glucose,” she explains. “If you’ve eaten something high in carbohydrates, your body shoots out a little too much insulin, and your glucose drops quickly. This makes you feel shaky, and you tend to crave carbs or sugar. This can lead to a vicious cycle.” These are the best foods for someone on a diabetic diet.
Many studies have shown that awareness about the diabetes and its complications is poor among the general population specially in the rural areas6,7. There is an urgent need to create awareness among the population regarding diabetes and about the serious consequences of this chronic disorder. Epidemiological data from India have shown the presence of a number of risk factors which can be easily identified by simple non-invasive risk scores8,9. The major risk factors are listed in Box 1.
Patients who suffer from diabetes have a lifelong struggle to attain and maintain blood glucose levels as close to the normal range as possible. With appropriate blood sugar control, the risk of both microvascular (small blood vessel) and neuropathic (nerve) complications is decreased markedly. Additionally, if hypertension (high blood pressure) and hyperlipidemia (high cholesterol) are treated promptly and aggressively, the risk of cardiovascular complications should decrease as well.
In countries using a general practitioner system, such as the United Kingdom, care may take place mainly outside hospitals, with hospital-based specialist care used only in case of complications, difficult blood sugar control, or research projects. In other circumstances, general practitioners and specialists share care in a team approach. Home telehealth support can be an effective management technique.[100]

And go easy on yourself: Sometimes you can be doing everything perfectly and your blood sugars start to creep up. Because diabetes is a progressive disease, your body slowly stops making insulin over time. If you've had diabetes for a very long time, try not to be discouraged if your doctor has to increase your medication or discusses insulin with you. Continue to do what you can to improve your health.
Although urine can also be tested for the presence of glucose, checking urine is not a good way to monitor treatment or adjust therapy. Urine testing can be misleading because the amount of glucose in the urine may not reflect the current level of glucose in the blood. Blood glucose levels can get very low or reasonably high without any change in the glucose levels in the urine.
Insulin is needed to allow glucose to pass from the blood into most of the body cells. Only the cells of the brain and central nervous system can use glucose from the blood in the absence of insulin. Without insulin, most body cells metabolize substances other than glucose for energy. However, fat metabolism in the absence of glucose metabolism, creates ketone bodies which are poisonous and their build up is associated with hyperglycemic coma. In the absence of sufficient insulin, unmetabolized glucose builds up in the blood. Water is drawn from body cells by osmosis to dilute the highly concentrated blood, and is then excreted along with much of the glucose, once the renal threshold for glucose (usually 10 mmol/L) is exceeded. Dehydration follows.
Diabetes mellitus (“diabetes”) and hypertension, which commonly coexist, are global public health issues contributing to an enormous burden of cardiovascular disease, chronic kidney disease, and premature mortality and disability. The presence of both conditions has an amplifying effect on risk for microvascular and macrovascular complications.1 The prevalence of diabetes is rising worldwide (Fig. 37.1). Both diabetes and hypertension disproportionately affect people in middle and low-income countries, and an estimated 70% of all cases of diabetes are found in these countries.2,3 In the United States alone, the total costs of care for diabetes and hypertension in the years 2012 and 2011 were 245 and 46 billion dollars, respectively.4,5 Therefore, there is a great potential for meaningful health and economic gains attached to prevention, detection, and intervention for diabetes and hypertension.
Fasting plasma glucose level: If your blood glucose level is 7.0 mmol/L or higher after having not eaten anything for at least 8 hours – called fasting – your doctor may diagnose diabetes. If your blood glucose level is between 6.1 to 6.9 mmol/L, your doctor may diagnose impaired fasting glucose or prediabetes (a condition that may later develop into diabetes).
Type 1 Diabetes: About 5 to 10 percent of those with diabetes have type 1 diabetes. It's an autoimmune disease, meaning the body's own immune system mistakenly attacks and destroys the insulin-producing cells in the pancreas. Patients with type 1 diabetes have very little or no insulin, and must take insulin everyday. Although the condition can appear at any age, typically it's diagnosed in children and young adults, which is why it was previously called juvenile diabetes.
Your doctor will check your blood glucose levels, and if you are diagnosed with diabetes, your doctor will guide you on a plan to keep your blood sugar levels normal. If your diabetes is mild, your doctor will likely recommend a diet plan, exercise, and weight loss. Your doctor may prescribe medications that help reduce blood sugar levels. In some women, insulin may be necessary.
How does type 2 diabetes progress over time? Type 2 diabetes is a progressive disease, meaning that the body’s ability to regulate blood sugar gets worse over time, despite careful management. Over time, the body’s cells become increasingly less responsive to insulin (increased insulin resistance) and beta cells in the pancreas produce less and less insulin (called beta-cell burnout). In fact, when people are diagnosed with type 2 diabetes, they usually have already lost up to 50% or more of their beta cell function. As type 2 diabetes progresses, people typically need to add one or more different types of medications. The good news is that there are many more choices available for treatments, and a number of these medications don’t cause as much hypoglycemia, hunger and/or weight gain (e.g., metformin, pioglitazone, DPP-4 inhibitors, GLP-1 agonists, SGLT-2 inhibitors, and better insulin). Diligent management early on can help preserve remaining beta cell function and sometimes slow progression of the disease, although the need to use more and different types of medications does not mean that you have failed.
A fingerstick glucose test is most often used to monitor blood glucose. Most blood glucose monitoring devices (glucose meters) use a drop of blood obtained by pricking the tip of the finger with a small lancet. The lancet holds a tiny needle that can be jabbed into the finger or placed in a spring-loaded device that easily and quickly pierces the skin. Most people find that the pricking causes only minimal discomfort. Then, a drop of blood is placed on a reagent strip. The strip contains chemicals that undergo changes depending on the glucose level. The glucose meter reads the changes in the test strip and reports the result on a digital display. Some devices allow the blood sample to be obtained from other sites, such as the palm, forearm, upper arm, thigh, or calf. Home glucose meters are smaller than a deck of cards.
Diabetes mellitus (DM) is best defined as a syndrome characterized by inappropriate fasting or postprandial hyperglycemia, caused by absolute or relative insulin deficiency and its metabolic consequences, which include disturbed metabolism of protein and fat. This syndrome results from a combination of deficiency of insulin secretion and its action. Diabetes mellitus occurs when the normal constant of the product of insulin secretion times insulin sensitivity, a parabolic function termed the “disposition index” (Figure 19-1), is inadequate to prevent hyperglycemia and its clinical consequences of polyuria, polydipsia, and weight loss. At high degrees of insulin sensitivity, small declines in the ability to secrete insulin cause only mild, clinically imperceptible defects in glucose metabolism. However, irrespective of insulin sensitivity, a minimum amount of insulin is necessary for normal metabolism. Thus, near absolute deficiency of insulin must result in severe metabolic disturbance as occurs in type 1 diabetes mellitus (T1DM). By contrast, with decreasing sensitivity to its action, higher amounts of insulin secretion are required for a normal disposition index. At a critical point in the disposition index curve (see Figure 19-1), a further small decrement in insulin sensitivity requires a large increase in insulin secretion; those who can mount these higher rates of insulin secretion retain normal glucose metabolism, whereas those who cannot increase their insulin secretion because of genetic or acquired defects now manifest clinical diabetes as occurs in type 2 diabetes (T2DM).
Watch for thirst or a very dry mouth, frequent urination, vomiting, shortness of breath, fatigue and fruity-smelling breath. You can check your urine for excess ketones with an over-the-counter ketones test kit. If you have excess ketones in your urine, consult your doctor right away or seek emergency care. This condition is more common in people with type 1 diabetes but can sometimes occur in people with type 2 diabetes.

Which came first: the diabetes or the PCOS? For many women, a diagnosis of polycystic ovary syndrome means a diabetes diagnosis isn’t far behind. PCOS and diabetes are both associated with insulin resistance, meaning there are similar hormonal issues at play in both diseases. Fortunately, managing your PCOS and losing weight may help reduce your risk of becoming diabetic over time.
Hyperglycemia or high blood sugar is a serious health problem for diabetics. There are two types of hyperglycemia, 1) fasting, and 2)postprandial or after meal hyperglycemia. Hyperglycemia can also lead to ketoacidosis or hyperglycemic hyperosmolar nonketotic syndrome (HHNS). There are a variety of causes of hyperglycemia in people with diabetes. Symptoms of high blood sugar may include increased thirst, headaches, blurred vision, and frequent urination.Treatment can be achieved through lifestyle changes or medications changes. Carefully monitoring blood glucose levels is key to prevention.

We give you special kudos for managing your condition, as it is not always easy. If you've had diabetes for a long time, it's normal to burn out sometimes. You may get tired of your day to day tasks, such as counting carbohydrates or measuring your blood sugar. Lean on a loved one or a friend for support, or consider talking to someone else who has diabetes who can provide, perhaps, an even more understanding ear or ideas that can help you.

Oral glucose tolerance test (OGTT): With this test you will be required to fast for at least 8 hours and then are given a drink with 75 g of carbohydrate. Your blood glucose is checked at fasting and then 2 hours after drinking the solution. If your blood glucose is 11.1 mmol/L or higher, your doctor may diagnose diabetes. If your blood glucose 2 hours after drinking the solution is between 7.8 to 11.1 mmol/L, your doctor may diagnose prediabetes. This is the preferred method to test for gestational diabetes.


Type 1 diabetes occurs when the immune system attacks and destroys the insulin-producing cells in the pancreas (the beta cells). As a result, the body is left without enough insulin to function normally (i.e. it becomes insulin deficient). This is called an autoimmune reaction, because the body attacks itself and produces antibodies to its own insulin-producing cells, thereby destroying them.

Some risks of the keto diet include low blood sugar, negative medication interactions, and nutrient deficiencies. (People who should avoid the keto diet include those with kidney damage or disease, women who are pregnant or breast-feeding, and those with or at a heightened risk for heart disease due to high blood pressure, high cholesterol, or family history. (40)
Low testosterone (low-T) can be caused by conditions such as type 2 diabetes, obesity, liver or kidney disease, hormonal disorders, certain infections, and hypogonadism. Signs and symptoms that a person may have low-T include insomnia, increased body fat, weight gain, reduced muscle, infertility, decreased sex drive, depression, and worsening of congestive heart failure or sleep apnea.
×