When there is excess glucose present in the blood, as with type 2 diabetes, the kidneys react by flushing it out of the blood and into the urine. This results in more urine production and the need to urinate more frequently, as well as an increased risk of urinary tract infections (UTIs) in men and women. People with type 2 diabetes are twice as likely to get a UTI as people without the disease, and the risk is higher in women than in men.

Every cell in the human body needs energy in order to function. The body's primary energy source is glucose, a simple sugar resulting from the digestion of foods containing carbohydrates (sugars and starches). Glucose from the digested food circulates in the blood as a ready energy source for any cells that need it. Insulin is a hormone or chemical produced by cells in the pancreas, an organ located behind the stomach. Insulin bonds to a receptor site on the outside of cell and acts like a key to open a doorway into the cell through which glucose can enter. Some of the glucose can be converted to concentrated energy sources like glycogen or fatty acids and saved for later use. When there is not enough insulin produced or when the doorway no longer recognizes the insulin key, glucose stays in the blood rather entering the cells.


Jump up ^ Rubino, F; Nathan, DM; Eckel, RH; Schauer, PR; Alberti, KG; Zimmet, PZ; Del Prato, S; Ji, L; Sadikot, SM; Herman, WH; Amiel, SA; Kaplan, LM; Taroncher-Oldenburg, G; Cummings, DE; Delegates of the 2nd Diabetes Surgery, Summit (June 2016). "Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations". Diabetes Care. 39 (6): 861–77. doi:10.2337/dc16-0236. PMID 27222544.
Pay attention if you find yourself feeling drowsy or lethargic; pain or numbness in your extremities; vision changes; fruity or sweet-smelling breath which is one of the symptoms of high ketones; and experiencing nausea or vomiting—as these are additional signs that something is not right. If there’s any question, see your doctor immediately to ensure that your blood sugar levels are safe and rule out diabetes.
The food that people eat provides the body with glucose, which is used by the cells as a source of energy. If insulin isn't available or doesn't work correctly to move glucose from the blood into cells, glucose will stay in the blood. High blood glucose levels are toxic, and cells that don't get glucose are lacking the fuel they need to function properly.
Being too heavy gets the bulk of the blame for triggering type 2 diabetes. According to the National Institutes of Health, about 85 percent of people with type 2 diabetes are overweight or obese. But consider that the remaining 15 percent are not. Consider, too, that roughly two-thirds of overweight people and a third of those who are obese will never develop diabetes. In other words, normal-weight and thin people also develop type 2, while heavy people won't necessarily. Clearly, there is more to the connection between lifestyle and type 2 diabetes than just body size.
The classic oral glucose tolerance test measures blood glucose levels five times over a period of three hours. Some physicians simply get a baseline blood sample followed by a sample two hours after drinking the glucose solution. In a person without diabetes, the glucose levels rise and then fall quickly. In someone with diabetes, glucose levels rise higher than normal and fail to come back down as fast.
Type 2 diabetes, a form of diabetes mellitus, is likely one of the better-known chronic diseases in the world — and that's no surprise. Data from the Centers for Disease Control and Prevention suggest in the United States alone, 30.3 million people, or 9.4 percent of the U.S. population, has diabetes, and the majority of these people have type 2. (1)
Other potentially important mechanisms associated with type 2 diabetes and insulin resistance include: increased breakdown of lipids within fat cells, resistance to and lack of incretin, high glucagon levels in the blood, increased retention of salt and water by the kidneys, and inappropriate regulation of metabolism by the central nervous system.[10] However, not all people with insulin resistance develop diabetes, since an impairment of insulin secretion by pancreatic beta cells is also required.[13]
Diabetes mellitus is a chronic disease caused by inherited and/or acquired deficiency in production of insulin by the pancreas, or by the ineffectiveness of the insulin produced. Such a deficiency results in increased concentrations of glucose in the blood, which in turn damage many of the body's systems, in particular the blood vessels and nerves.
Having diabetes requires life-long treatment and follow-up by health professionals. Diabetes can be linked to damage of the eyes, kidneys and feet. It is also associated with increased risk of strokes, heart attacks and poor blood circulation to the legs. Medical care aims to minimise these risks by controlling diabetes, blood pressure and cholesterol and screening for possible complications caused by the diabetes. 
Oral glucose tolerance test (OGTT): With this test you will be required to fast for at least 8 hours and then are given a drink with 75 g of carbohydrate. Your blood glucose is checked at fasting and then 2 hours after drinking the solution. If your blood glucose is 11.1 mmol/L or higher, your doctor may diagnose diabetes. If your blood glucose 2 hours after drinking the solution is between 7.8 to 11.1 mmol/L, your doctor may diagnose prediabetes. This is the preferred method to test for gestational diabetes.
Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[32][33] The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk.[26] Eating a lot of white rice appears to play a role in increasing risk.[34] A lack of exercise is believed to cause 7% of cases.[35] Persistent organic pollutants may play a role.[36]
Type 2 diabetes usually begins with insulin resistance, a condition in which muscle, liver, and fat cells do not use insulin well. As a result, your body needs more insulin to help glucose enter cells. At first, the pancreas makes more insulin to keep up with the added demand. Over time, the pancreas can’t make enough insulin, and blood glucose levels rise.
Can diabetes be prevented? Why are so many people suffering from it now over decades past? While there will never be anyway to possibly avoid genetic diabetes, there have been cases where dietary changes could perhaps have been made to delay or prevent the ailment from further developing. Doctors report that obesity plays a role, as well as activity levels, and even overall mental health often can be common threads of pre-diabetic patients.

Sources of processed or added sugar, including condiments, honey, and especially sugary drinks, are just a few of the potential culprits for weight gain, Grieger says, and it’s when they’re consumed in excess that they can contribute to diabetes risk. “The largest source of added sugar comes from sweetened beverages. They run the gamut of soda, sweetened tea, juices with added sugar, sports drinks — it’s a plethora. Just about everything we drink has added sugar in it, except for water,” she explains.
A healthy meal plan for people with diabetes is generally the same as healthy eating for anyone – low in saturated fat, moderate in salt and sugar, with meals based on lean protein, non-starchy vegetables, whole grains, healthy fats, and fruit. Foods that say they are healthier for people with diabetes generally offer no special benefit. Most of them still raise blood glucose levels, are more expensive, and can also have a laxative effect if they contain sugar alcohols.

There is currently no cure for diabetes. The condition, however, can be managed so that patients can live a relatively normal life. Treatment of diabetes focuses on two goals: keeping blood glucose within normal range and preventing the development of long-term complications. Careful monitoring of diet, exercise, and blood glucose levels are as important as the use of insulin or oral medications in preventing complications of diabetes. In 2003, the American Diabetes Association updated its Standards of Care for the management of diabetes. These standards help manage health care providers in the most recent recommendations for diagnosis and treatment of the disease.
The American Diabetes Association sponsored an international panel in 1995 to review the literature and recommend updates of the classification of diabetes mellitus. The definitions and descriptions that follow are drawn from the Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. The report was first approved in 1997 and modified in 1999. Although other terms are found in older literature and remain in use, their use in current clinical practice is inappropriate. Epidemiologic and research studies are facilitated by use of a common language.
Findings from the Diabetes Control and Complications Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have clearly shown that aggressive and intensive control of elevated levels of blood sugar in patients with type 1 and type 2 diabetes decreases the complications of nephropathy, neuropathy, retinopathy, and may reduce the occurrence and severity of large blood vessel diseases. Aggressive control with intensive therapy means achieving fasting glucose levels between 70-120 mg/dl; glucose levels of less than 160 mg/dl after meals; and a near normal hemoglobin A1c levels (see below).

What is type 2 diabetes and prediabetes? Behind type 2 diabetes is a disease where the body’s cells have trouble responding to insulin – this is called insulin resistance. Insulin is a hormone needed to store the energy found in food into the body’s cells. In prediabetes, insulin resistance starts growing and the beta cells in the pancreas that release insulin will try to make even more insulin to make up for the body’s insensitivity. This can go on for a long time without any symptoms. Over time, though, the beta cells in the pancreas will fatigue and will no longer be able to produce enough insulin – this is called “beta burnout.” Once there is not enough insulin, blood sugars will start to rise above normal. Prediabetes causes people to have higher-than-normal blood sugars (and an increased risk for heart disease and stroke). Left unnoticed or untreated, blood sugars continue to worsen and many people progress to type 2 diabetes. After a while, so many of the beta cells have been damaged that diabetes becomes an irreversible condition. 
While many experts believe that most type 1 genes have been identified, the situation with type 2 diabetes is much different. A recent study found that the known genetic links to type 2 probably account for only about 6 percent of the genetic predisposition for that form of diabetes. This could mean either that some of the genes discovered have a bigger effect than is currently believed or that "we are still missing 94 percent of the genes," says Atul Butte, MD, PhD, an assistant professor of pediatrics at Stanford University.
Learning about the disease and actively participating in the treatment is important, since complications are far less common and less severe in people who have well-managed blood sugar levels.[76][77] The goal of treatment is an HbA1C level of 6.5%, but should not be lower than that, and may be set higher.[78] Attention is also paid to other health problems that may accelerate the negative effects of diabetes. These include smoking, elevated cholesterol levels, obesity, high blood pressure, and lack of regular exercise.[78] Specialized footwear is widely used to reduce the risk of ulceration, or re-ulceration, in at-risk diabetic feet. Evidence for the efficacy of this remains equivocal, however.[79]

If sugars in general are not associated with increased diabetes risk, but sodas are, it suggests the possibility that something other than sugar explains this relationship.16 Sodas are often accompanied by cheeseburgers, chicken nuggets, and other unhealthful foods. That is, soda consumption can be a sign of a diet focusing on fast foods or an overall unhealthful diet and lifestyle. And sugary snack foods (e.g., cookies and snack pastries) are often high in fat; the sugar lures us in to the fat calories hiding inside. Some, but not all, observational trials have sought to control for these confounding variables. 
After eating carbohydrates, the carbs break down into sugar, trigger the pancreas to produce insulin and are then stored in liver and muscles. However, there is a limit to the amount of sugar the liver and muscles can store. The easiest way to understand this is to think of your liver and muscles as small closets without much storage space. If sugar keeps coming in, the closet will quickly fill up.
There are a range of different symptoms in people with diabetes. They may feel thirsty, pass a large amount of urine, wake up overnight to pass urine, lose weight and have blurred vision. Patients are vulnerable to infections such as thrush and may present with this. Particularly in type 2 diabetes, patients may not be aware of their diabetes for several years and a diagnosis may only be made when they seek treatment for diabetes-related complications such as foot, eye or kidney problems. Some patients may become severely ill and be taken into hospital with an infection and/or very high blood sugar levels.
Medications used to treat diabetes do so by lowering blood sugar levels. There is broad consensus that when people with diabetes maintain tight glucose control (also called "tight glycemic control") -- keeping the glucose levels in their blood within normal ranges - that they experience fewer complications like kidney problems and eye problems.[84][85] There is however debate as to whether this is cost effective for people later in life.[86]
Your doctor will carefully examine you at each visit for diabetes. In particular they will examine your cardiovascular system, eyes and neurological systems to detect any complications present. In the acute phase you may appear wasted and dehydrated. You may have difficulty breathing and have a sweet smell to your breath. In the later stages, your doctor will check your pulse, listen to your heart, measure your blood pressure (often lying and standing) and examine your limbs to detect any loss of sensation or ulcers.
Diabetes is a serious and costly disease which is becoming increasingly common, especially in developing countries and disadvantaged minorities. However, there are ways of preventing it and/or controlling its progress. Public and professional awareness of the risk factors for, and symptoms of diabetes are an important step towards its prevention and control.

In type 1 diabetes (formerly called insulin-dependent diabetes or juvenile-onset diabetes), the body's immune system attacks the insulin-producing cells of the pancreas, and more than 90% of them are permanently destroyed. The pancreas, therefore, produces little or no insulin. Only about 5 to 10% of all people with diabetes have type 1 disease. Most people who have type 1 diabetes develop the disease before age 30, although it can develop later in life.
With type 1, a disease that often seems to strike suddenly and unexpectedly, the effects of environment and lifestyle are far less clear. But several theories attempt to explain why cases of type 1 have increased so dramatically in recent decades, by around 5 percent per year since 1980. The three main suspects now are too little sun, too good hygiene, and too much cow's milk.

Blood sugar should be regularly monitored so that any problems can be detected and treated early. Treatment involves lifestyle changes such as eating a healthy and balanced diet and regular physical exercise. If lifestyle changes alone are not enough to regulate the blood glucose level, anti-diabetic medication in the form of tablets or injections may be prescribed. In some cases, people who have had type 2 diabetes for many years are eventually prescribed insulin injections.

There is no single gene that “causes” type 1 diabetes. Instead, there are a large number of inherited factors that may increase an individual’s likelihood of developing diabetes. This is known as multifactorial inheritance. The genes implicated in the development of type 1 diabetes mellitus control the human leukocyte antigen (HLA) system. This system is involved in the complex process of identifying cells which are a normal part of the body, and distinguishing them from foreign cells, such as those of bacteria or viruses. In an autoimmune disease such as diabetes mellitus, this system makes a mistake in identifying the normal ‘self’ cells as ‘foreign’, and attacks the body.  
Insulin works like a key that opens the doors to cells and lets the glucose in. Without insulin, glucose can't get into the cells (the doors are "locked" and there is no key) and so it stays in the bloodstream. As a result, the level of sugar in the blood remains higher than normal. High blood sugar levels are a problem because they can cause a number of health problems.
Unlike many health conditions, diabetes is managed mostly by you, with support from your health care team (including your primary care doctor, foot doctor, dentist, eye doctor, registered dietitian nutritionist, diabetes educator, and pharmacist), family, and other important people in your life. Managing diabetes can be challenging, but everything you do to improve your health is worth it!
Several other signs and symptoms can mark the onset of diabetes although they are not specific to the disease. In addition to the known ones above, they include blurred vision, headache, fatigue, slow healing of cuts, and itchy skin. Prolonged high blood glucose can cause glucose absorption in the lens of the eye, which leads to changes in its shape, resulting in vision changes. Long-term vision loss can also be caused by diabetic retinopathy. A number of skin rashes that can occur in diabetes are collectively known as diabetic dermadromes.[23]
Diabetes mellitus is a public health problem around the world. In 1980, 108 million adults worldwide had diabetes (4.7% of the global population). By 2014 this had risen to 422 million adults (8.5% of the global population). By 2040, the number is expected to be 642 million adults. In the UK, there is estimated to be between 3 and 4 million people with diabetes. Type 2 diabetes accounts for more than 90% of all patients with diabetes. 
Type 1 and type 2 diabetes were identified as separate conditions for the first time by the Indian physicians Sushruta and Charaka in 400–500 AD with type 1 associated with youth and type 2 with being overweight.[110] The term "mellitus" or "from honey" was added by the Briton John Rolle in the late 1700s to separate the condition from diabetes insipidus which is also associated with frequent urination.[110] Effective treatment was not developed until the early part of the 20th century when the Canadians Frederick Banting and Charles Best discovered insulin in 1921 and 1922.[110] This was followed by the development of the long acting NPH insulin in the 1940s.[110]
What does the research say about proactive type 2 diabetes management? Research shows that proactive management can pay off in fewer complications down the road. In the landmark UKPDS study, 5,102 patients newly diagnosed with type 2 diabetes were followed for an average of 10 years to determine whether intensive use of blood glucose-lowering drugs would result in health benefits. Tighter average glucose control (an A1c of 7.0% vs. an A1c of 7.9%) reduced the rate of complications in the eyes, kidneys, and nervous system, by 25%. For every percentage point decrease in A1c (e.g., from 9% to 8%), there was a 25% reduction in diabetes-related deaths, and an 18% reduction in combined fatal and nonfatal heart attacks.
1. Monitoring of blood glucose status. In the past, urine testing was an integral part of the management of diabetes, but it has largely been replaced in recent years by self monitoring of blood glucose. Reasons for this are that blood testing is more accurate, glucose in the urine shows up only after the blood sugar level is high, and individual renal thresholds vary greatly and can change when certain medications are taken. As a person grows older and the kidney is less able to eliminate sugar in the urine, the renal threshold rises and less sugar is spilled into the urine. The position statement of the American Diabetes Association on Tests of Glycemia in Diabetes notes that urine testing still plays a role in monitoring in type 1 and gestational diabetes, and in pregnancy with pre-existing diabetes, as a way to test for ketones. All people with diabetes should test for ketones during times of acute illness or stress and when blood glucose levels are consistently elevated.
To explain what hemoglobin A1c is, think in simple terms. Sugar sticks, and when it's around for a long time, it's harder to get it off. In the body, sugar sticks too, particularly to proteins. The red blood cells that circulate in the body live for about three months before they die off. When sugar sticks to these hemoglobin proteins in these cells, it is known as glycosylated hemoglobin or hemoglobin A1c (HBA1c). Measurement of HBA1c gives us an idea of how much sugar is present in the bloodstream for the preceding three months. In most labs, the normal range is 4%-5.9 %. In poorly controlled diabetes, its 8.0% or above, and in well controlled patients it's less than 7.0% (optimal is <6.5%). The benefits of measuring A1c is that is gives a more reasonable and stable view of what's happening over the course of time (three months), and the value does not vary as much as finger stick blood sugar measurements. There is a direct correlation between A1c levels and average blood sugar levels as follows.
^ Jump up to: a b Cheng, J; Zhang, W; Zhang, X; Han, F; Li, X; He, X; Li, Q; Chen, J (May 2014). "Effect of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis". JAMA Internal Medicine. 174 (5): 773–85. doi:10.1001/jamainternmed.2014.348. PMID 24687000.

Of course, you’re exhausted every now and then. But ongoing fatigue is an important symptom to pay attention to; it might mean the food you’re eating for energy isn’t being broken down and used by cells as it’s supposed to. “You’re not getting the fuel your body needs,” says Dobbins. “You’re going to be tired and feel sluggish.” But in many cases of type 2 diabetes, your sugar levels can be elevated for awhile, so these diabetes symptoms could come on slowly.
Using insulin to get blood glucose levels to a healthy level is a good thing, not a bad one. For most people, type 2 diabetes is a progressive disease. When first diagnosed, many people with type 2 diabetes can keep their blood glucose at a healthy level with a combination of meal planning, physical activity, and taking oral medications. But over time, the body gradually produces less and less of its own insulin, and eventually oral medications may not be enough to keep blood glucose levels in a healthy range. 
A study by Mayer-Davis et al indicated that between 2002 and 2012, the incidence of type 1 and type 2 diabetes mellitus saw a significant rise among youths in the United States. According to the report, after the figures were adjusted for age, sex, and race or ethnic group, the incidence of type 1 (in patients aged 0-19 years) and type 2 diabetes mellitus (in patients aged 10-19 years) during this period underwent a relative annual increase of 1.8% and 4.8%, respectively. The greatest increases occurred among minority youths. [29]
The American Diabetes Association sponsored an international panel in 1995 to review the literature and recommend updates of the classification of diabetes mellitus. The definitions and descriptions that follow are drawn from the Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. The report was first approved in 1997 and modified in 1999. Although other terms are found in older literature and remain in use, their use in current clinical practice is inappropriate. Epidemiologic and research studies are facilitated by use of a common language.
Merck & Co., Inc., Kenilworth, NJ, USA is a global healthcare leader working to help the world be well. From developing new therapies that treat and prevent disease to helping people in need, we are committed to improving health and well-being around the world. The Merck Manual was first published in 1899 as a service to the community. The legacy of this great resource continues as the Merck Manual in the US and Canada and the MSD Manual outside of North America. Learn more about our commitment to Global Medical Knowledge.
The term "diabetes" or "to pass through" was first used in 230 BCE by the Greek Apollonius of Memphis.[108] The disease was considered rare during the time of the Roman empire, with Galen commenting he had only seen two cases during his career.[108] This is possibly due to the diet and lifestyle of the ancients, or because the clinical symptoms were observed during the advanced stage of the disease. Galen named the disease "diarrhea of the urine" (diarrhea urinosa).[110]
The word mellitus (/məˈlaɪtəs/ or /ˈmɛlɪtəs/) comes from the classical Latin word mellītus, meaning "mellite"[114] (i.e. sweetened with honey;[114] honey-sweet[115]). The Latin word comes from mell-, which comes from mel, meaning "honey";[114][115] sweetness;[115] pleasant thing,[115] and the suffix -ītus,[114] whose meaning is the same as that of the English suffix "-ite".[116] It was Thomas Willis who in 1675 added "mellitus" to the word "diabetes" as a designation for the disease, when he noticed the urine of a diabetic had a sweet taste (glycosuria). This sweet taste had been noticed in urine by the ancient Greeks, Chinese, Egyptians, Indians, and Persians.
Type II is considered a milder form of diabetes because of its slow onset (sometimes developing over the course of several years) and because it usually can be controlled with diet and oral medication. The consequences of uncontrolled and untreated Type II diabetes, however, are the just as serious as those for Type I. This form is also called noninsulin-dependent diabetes, a term that is somewhat misleading. Many people with Type II diabetes can control the condition with diet and oral medications, however, insulin injections are sometimes necessary if treatment with diet and oral medication is not working.
Regular insulin is fast-acting and starts to work within 15-30 minutes, with its peak glucose-lowering effect about two hours after it is injected. Its effects last for about four to six hours. NPH (neutral protamine Hagedorn) and Lente insulin are intermediate-acting, starting to work within one to three hours and lasting up to 18-26 hours. Ultra-lente is a long-acting form of insulin that starts to work within four to eight hours and lasts 28-36 hours.
Individuals with diabetes have two times the likelihood of getting a urinary tract infection compared to individuals without the disease. If you find yourself getting up every couple of hours in the middle of the night, and you seem to be expelling a lot more urine than you used to, talk to your doctor and find out whether or not you have diabetes.

Schedule a yearly physical exam and regular eye exams. Your regular diabetes checkups aren't meant to replace regular physicals or routine eye exams. During the physical, your doctor will look for any diabetes-related complications, as well as screen for other medical problems. Your eye care specialist will check for signs of retinal damage, cataracts and glaucoma.
FIGURE 19-1 ■. This figure shows the hyperbolic relationship of insulin resistance and beta cell function. On the y-axis is beta cell function as reflected in the first-phase insulin response during intravenous (IV) glucose infusion; on the x-axis is insulin sensitivity and its mirror image resistance. In a subject with normal glucose tolerance (NGT) and beta-cell reserve, an increase in insulin resistance results in increased insulin release and normal glucose tolerance. In an individual for whom the capacity to increase insulin release is compromised, increasing insulin resistance with partial or no beta-cell compensation results in progression from normal glucose tolerance, to impaired glucose tolerance (IGT), and finally to diabetes (T2D). Differences between these categories are small at high insulin sensitivity, which may be maintained by weight reduction, exercise, and certain drugs. At a critical degree of insulin resistance, due to obesity or other listed factors, only a further small increment in resistance requires a large increase in insulin output. Those that can increase insulin secretion to this extent retain normal glucose tolerance; those who cannot achieve this degree of insulin secretion (e.g., due to a mild defect in genes regulating insulin synthesis, insulin secretion, insulin action, or an ongoing immune destruction of beta cells) now unmask varying degrees of carbohydrate intolerance. The product of insulin sensitivity (the reciprocal of insulin resistance) and acute insulin response (a measurement beta-cell function) has been called the “disposition index.” This index remains constant in an individual with normal beta cell compensation in response to changes in insulin resistance. IGT, impaired glucose tolerance; NGT, normal glucose tolerance; T2D, type 2 diabetes.
Insulin — the hormone that allows your body to regulate sugar in the blood — is made in your pancreas. Essentially, insulin resistance is a state in which the body’s cells do not use insulin efficiently. As a result, it takes more insulin than normal to transport blood sugar (glucose) into cells, to be used immediately for fuel or stored for later use. A drop in efficiency in getting glucose to cells creates a problem for cell function; glucose is normally the body’s quickest and most readily available source of energy.
An article published in November 2012 in the journal Global Public Health found that countries with more access to HFCS tended to have higher rates of the disease. Though it’s likely that these countries’ overall eating habits play a role in their populations’ diabetes risk, a study published in February 2013 in the journal PLoS One found limiting access to HFCS in particular may help reduce rates of the diagnosis.
Lifestyle factors are important to the development of type 2 diabetes, including obesity and being overweight (defined by a body mass index of greater than 25), lack of physical activity, poor diet, stress, and urbanization.[10][30] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of cases in Pima Indians and Pacific Islanders.[13] Among those who are not obese, a high waist–hip ratio is often present.[13] Smoking appears to increase the risk of type 2 diabetes mellitus.[31]
Since diabetes can be life-threatening if not properly managed, patients should not attempt to treat this condition without medicial supervision. A variety of alternative therapies can be helpful in managing the symptoms of diabetes and supporting patients with the disease. Acupuncture can help relieve the pain associated with diabetic neuropathy by stimulation of cetain points. A qualified practitioner should be consulted. Herbal remedies also may be helpful in managing diabetes. Although there is no herbal substitute for insulin, some herbs may help adjust blood sugar levels or manage other diabetic symptoms. Some options include:
Getting diagnosed with diabetes can be shocking, but the good news is that, although it is a disease you must deal with daily, it is a manageable one. If you are experiencing any of the above symptoms, especially if you are someone who is at high risk, you should meet with your primary care physician to get tested. The earlier a diagnosis is made, the more likely you can get your diabetes under control and prevent complications.
A second theory, dubbed the hygiene hypothesis, blames the rise of type 1 on a society that's too clean. Good housekeeping and hygiene habits mean far fewer interactions with germs, which in turn may foster an immune system prone to going awry. "In a developing country, you have more infectious disease. This is associated with a lower risk of type 1 diabetes," says Li Wen, MD, PhD, an immunologist at the Yale University School of Medicine. In her lab, rodents raised in hyper-clean environments are more likely to get type 1 than those reared in dirtier cages.
People with type 1 diabetes are unable to produce any insulin at all. People with type 2 diabetes still produce insulin, however, the cells in the muscles, liver and fat tissue are inefficient at absorbing the insulin and cannot regulate glucose well. As a result, the body tries to compensate by having the pancreas pump out more insulin. But the pancreas slowly loses the ability to produce enough insulin, and as a result, the cells don’t get the energy they need to function properly.
Every cell in the human body needs energy in order to function. The body's primary energy source is glucose, a simple sugar resulting from the digestion of foods containing carbohydrates (sugars and starches). Glucose from the digested food circulates in the blood as a ready energy source for any cells that need it. Insulin is a hormone or chemical produced by cells in the pancreas, an organ located behind the stomach. Insulin bonds to a receptor site on the outside of cell and acts like a key to open a doorway into the cell through which glucose can enter. Some of the glucose can be converted to concentrated energy sources like glycogen or fatty acids and saved for later use. When there is not enough insulin produced or when the doorway no longer recognizes the insulin key, glucose stays in the blood rather entering the cells.
Type 2 diabetes is usually associated with being overweight (BMI greater than 25), and is harder to control when food choices are not adjusted, and you get no physical activity. And while it’s true that too much body fat and physical inactivity (being sedentary) does increase the likelihood of developing type 2, even people who are fit and trim can develop this type of diabetes.2,3
Type 1 diabetes mellitus has wide geographic variation in incidence and prevalence. [30] Annual incidence varies from 0.61 cases per 100,000 population in China to 41.4 cases per 100,000 population in Finland. Substantial variations are observed between nearby countries with differing lifestyles, such as Estonia and Finland, and between genetically similar populations, such as those in Iceland and Norway.

There’s no cure for type 1 diabetes. People with type 1 diabetes don’t produce insulin, so it must be regularly injected into your body. Some people take injections into the soft tissue, such as the stomach, arm, or buttocks, several times per day. Other people use insulin pumps. Insulin pumps supply a steady amount of insulin into the body through a small tube.

As part of proper diabetes management, it is important to be aware of the symptoms of abnormal blood glucose levels and know how to properly monitor your blood glucose levels using a home glucose meter. You should remember to always keep glucose tablets or candies containing sugar with you at all times to manage low blood glucose levels (hypoglycemia). Symptoms of low blood glucose include:


FIGURE 19-1 ■. This figure shows the hyperbolic relationship of insulin resistance and beta cell function. On the y-axis is beta cell function as reflected in the first-phase insulin response during intravenous (IV) glucose infusion; on the x-axis is insulin sensitivity and its mirror image resistance. In a subject with normal glucose tolerance (NGT) and beta-cell reserve, an increase in insulin resistance results in increased insulin release and normal glucose tolerance. In an individual for whom the capacity to increase insulin release is compromised, increasing insulin resistance with partial or no beta-cell compensation results in progression from normal glucose tolerance, to impaired glucose tolerance (IGT), and finally to diabetes (T2D). Differences between these categories are small at high insulin sensitivity, which may be maintained by weight reduction, exercise, and certain drugs. At a critical degree of insulin resistance, due to obesity or other listed factors, only a further small increment in resistance requires a large increase in insulin output. Those that can increase insulin secretion to this extent retain normal glucose tolerance; those who cannot achieve this degree of insulin secretion (e.g., due to a mild defect in genes regulating insulin synthesis, insulin secretion, insulin action, or an ongoing immune destruction of beta cells) now unmask varying degrees of carbohydrate intolerance. The product of insulin sensitivity (the reciprocal of insulin resistance) and acute insulin response (a measurement beta-cell function) has been called the “disposition index.” This index remains constant in an individual with normal beta cell compensation in response to changes in insulin resistance. IGT, impaired glucose tolerance; NGT, normal glucose tolerance; T2D, type 2 diabetes.
Insulin is a hormone that is produced by specialized cells (beta cells) of the pancreas. (The pancreas is a deep-seated organ in the abdomen located behind the stomach.) In addition to helping glucose enter the cells, insulin is also important in tightly regulating the level of glucose in the blood. After a meal, the blood glucose level rises. In response to the increased glucose level, the pancreas normally releases more insulin into the bloodstream to help glucose enter the cells and lower blood glucose levels after a meal. When the blood glucose levels are lowered, the insulin release from the pancreas is turned down. It is important to note that even in the fasting state there is a low steady release of insulin than fluctuates a bit and helps to maintain a steady blood sugar level during fasting. In normal individuals, such a regulatory system helps to keep blood glucose levels in a tightly controlled range. As outlined above, in patients with diabetes, the insulin is either absent, relatively insufficient for the body's needs, or not used properly by the body. All of these factors cause elevated levels of blood glucose (hyperglycemia).
Risk factors for type 2 diabetes include obesity, high cholesterol, high blood pressure, and physical inactivity. The risk of developing type 2 diabetes also increases as people grow older. People who are over 40 and overweight are more likely to develop type 2 diabetes, although the incidence of this type of diabetes in adolescents is growing. Diabetes is more common among Native Americans, African Americans, Hispanic Americans and Asian Americans/Pacific Islanders. Also, people who develop diabetes while pregnant (a condition called gestational diabetes) are more likely to develop type 2 diabetes later in life.

Diabetes mellitus has been recorded in all species but is most commonly seen in middle-aged to older, obese, female dogs. A familial predisposition has been suggested. It is possible to identify two types of diabetes, corresponding to the disease in humans, depending on the response to an intravenous glucose tolerance test. Type I is insulin-dependent and comparable to the juvenile onset form of the disease in children in which there is an absolute deficiency of insulin—there is a very low initial blood insulin level and a low response to the injected glucose. This form is seen in a number of dog breeds, particularly the Keeshond, Doberman pinscher, German shepherd dog, Poodle, Golden retriever and Labrador retriever.
John P. Cunha, DO, is a U.S. board-certified Emergency Medicine Physician. Dr. Cunha's educational background includes a BS in Biology from Rutgers, the State University of New Jersey, and a DO from the Kansas City University of Medicine and Biosciences in Kansas City, MO. He completed residency training in Emergency Medicine at Newark Beth Israel Medical Center in Newark, New Jersey.
×