a broadly applied term used to denote a complex group of syndromes that have in common a disturbance in the oxidation and utilization of glucose, which is secondary to a malfunction of the beta cells of the pancreas, whose function is the production and release of insulin. Because insulin is involved in the metabolism of carbohydrates, proteins and fats, diabetes is not limited to a disturbance of glucose homeostasis alone.

Retinopathy: If blood sugar levels are too high, they can damage the eyes and cause vision loss and blindness. Retinopathy causes the development and leaking of new blood vessels behind the eye. Other effects of diabetes, such as high blood pressure and high cholesterol, can make this worse. According to the CDC, early treatment can prevent or reduce the risk of blindness in an estimated 90 percent of people with diabetes.
It isn't always easy to start an exercise regimen, but once you get into a groove, you may be surprised at how much you enjoy it. Find a way to fit activity into your daily routine. Even a few minutes a day goes a long way. The American Diabetes Association recommends that adults with diabetes should perform at least 150 minutes of moderate-intensity aerobic physical activity per week (spread over at least three days with no more than two consecutive days without exercise). You don't have to start with this right away, though. Start with five to 10 minutes per day and go from there. To stay motivated, find a buddy, get a fitness tracker, or use another measurement tool that can help you see your progress.
Type 1 DM is caused by autoimmune destruction of the insulin-secreting beta cells of the pancreas. The loss of these cells results in nearly complete insulin deficiency; without exogenous insulin, type 1 DM is rapidly fatal. Type 2 DM results partly from a decreased sensitivity of muscle cells to insulin-mediated glucose uptake and partly from a relative decrease in pancreatic insulin secretion.

Though not routinely used any longer, the oral glucose tolerance test (OGTT) is a gold standard for making the diagnosis of type 2 diabetes. It is still commonly used for diagnosing gestational diabetes and in conditions of pre-diabetes, such as polycystic ovary syndrome. With an oral glucose tolerance test, the person fasts overnight (at least eight but not more than 16 hours). Then first, the fasting plasma glucose is tested. After this test, the person receives an oral dose (75 grams) of glucose. There are several methods employed by obstetricians to do this test, but the one described here is standard. Usually, the glucose is in a sweet-tasting liquid that the person drinks. Blood samples are taken at specific intervals to measure the blood glucose.
Over recent decades, and particularly in the past five years, researchers have found dozens of genes with links to diabetes. The count stands at about 50 genes for type 1 and 38 for type 2. The numbers have risen quickly in recent years because of advances in the gene-sequencing technology used to conduct genome-wide association studies. This technique involves taking the genetic compositions of a group of people with a disease and comparing them en masse to the genomes of people who don't have the disease.
Jump up ^ Haw JS, Galaviz KI, Straus AN, Kowalski AJ, Magee MJ, Weber MB, Wei J, Narayan KM, Ali MK (December 2017). "Long-term Sustainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials". JAMA Internal Medicine. 177 (12): 1808–1817. doi:10.1001/jamainternmed.2017.6040. PMC 5820728. PMID 29114778.
Recognizing the symptoms of Type 1 diabetes is critical. Although Type 1 develops gradually, as the body’s insulin production decreases, blood glucose levels can become dangerously high once insulin production is outpaced. Symptoms may develop rapidly and can be mistaken for other illnesses such as the flu and a delayed diagnosis can have serious consequences.
1. Monitoring of blood glucose status. In the past, urine testing was an integral part of the management of diabetes, but it has largely been replaced in recent years by self monitoring of blood glucose. Reasons for this are that blood testing is more accurate, glucose in the urine shows up only after the blood sugar level is high, and individual renal thresholds vary greatly and can change when certain medications are taken. As a person grows older and the kidney is less able to eliminate sugar in the urine, the renal threshold rises and less sugar is spilled into the urine. The position statement of the American Diabetes Association on Tests of Glycemia in Diabetes notes that urine testing still plays a role in monitoring in type 1 and gestational diabetes, and in pregnancy with pre-existing diabetes, as a way to test for ketones. All people with diabetes should test for ketones during times of acute illness or stress and when blood glucose levels are consistently elevated.
Certain genetic markers have been shown to increase the risk of developing Type 1 diabetes. Type 2 diabetes is strongly familial, but it is only recently that some genes have been consistently associated with increased risk for Type 2 diabetes in certain populations. Both types of diabetes are complex diseases caused by mutations in more than one gene, as well as by environmental factors.
The prognosis for a person with this health condition is estimated to be a life expectancy of 10 years less than a person without diabetes. However, good blood sugar control and taking steps to prevent complications is shortening this gap and people with the condition are living longer than ever before. It can be reversed with diligent attention to changing lifestyle behaviors.

The ketogenic, or keto, diet calls for dramatically increasing your fat intake and consuming a moderate amount of protein and a very low amount of carbs, with the aim of kicking your body into a natural metabolic state called ketosis, in which it relies on burning fat rather than carbs for energy. Ketosis is different from diabetic ketoacidosis, a health emergency that occurs when insulin levels are low in conjunction with high levels of ketones. (37) Ketones are by-products of metabolism that are released in the blood when carb intake is low.
Type 2 diabetes (T2D) is more common than type 1 diabetes with about 90 to 95 percent of people with diabetes having T2D. According to the Centers for Disease Control and Prevention’s report, 30.3 million Americans, or 9.4% of the US population have diabetes.1 More alarming, an estimated 84 million more American adults have prediabetes, which if not treated, will advance to diabetes within five years.1
Diabetes develops when the body can't make any or enough insulin, and/or when it can't properly use the insulin it makes. For some people with diabetes, the body becomes resistant to insulin. In these cases, insulin is still produced, but the body does not respond to the effects of insulin as it should. This is called insulin resistance. Whether from not enough insulin or the inability to use insulin properly, the result is high levels of glucose in the blood, or hyperglycemia.
Excess glucose in the blood can damage small blood vessels in the nerves causing a tingling sensation or pain in the fingers, toes and limbs. Nerves that lie outside of the central nervous system may also be damaged, which is referred to as peripheral neuropathy. If nerves of the gastrointestinal tract are affected, this may cause vomiting, constipation and diarrhea.

Hyperglycemia or high blood sugar is a serious health problem for diabetics. There are two types of hyperglycemia, 1) fasting, and 2)postprandial or after meal hyperglycemia. Hyperglycemia can also lead to ketoacidosis or hyperglycemic hyperosmolar nonketotic syndrome (HHNS). There are a variety of causes of hyperglycemia in people with diabetes. Symptoms of high blood sugar may include increased thirst, headaches, blurred vision, and frequent urination.Treatment can be achieved through lifestyle changes or medications changes. Carefully monitoring blood glucose levels is key to prevention.

The term "diabetes" or "to pass through" was first used in 230 BCE by the Greek Apollonius of Memphis.[108] The disease was considered rare during the time of the Roman empire, with Galen commenting he had only seen two cases during his career.[108] This is possibly due to the diet and lifestyle of the ancients, or because the clinical symptoms were observed during the advanced stage of the disease. Galen named the disease "diarrhea of the urine" (diarrhea urinosa).[110]
The body obtains glucose from three main sources: the intestinal absorption of food; the breakdown of glycogen (glycogenolysis), the storage form of glucose found in the liver; and gluconeogenesis, the generation of glucose from non-carbohydrate substrates in the body.[60] Insulin plays a critical role in balancing glucose levels in the body. Insulin can inhibit the breakdown of glycogen or the process of gluconeogenesis, it can stimulate the transport of glucose into fat and muscle cells, and it can stimulate the storage of glucose in the form of glycogen.[60]
Your doctor will check your blood glucose levels, and if you are diagnosed with diabetes, your doctor will guide you on a plan to keep your blood sugar levels normal. If your diabetes is mild, your doctor will likely recommend a diet plan, exercise, and weight loss. Your doctor may prescribe medications that help reduce blood sugar levels. In some women, insulin may be necessary.
You are more likely to develop type 2 diabetes if you are not physically active and are overweight or obese. Extra weight sometimes causes insulin resistance and is common in people with type 2 diabetes. The location of body fat also makes a difference. Extra belly fat is linked to insulin resistance, type 2 diabetes, and heart and blood vessel disease. To see if your weight puts you at risk for type 2 diabetes, check out these Body Mass Index (BMI) charts.
Diabetes mellitus is classified into four broad categories: type 1, type 2, gestational diabetes, and "other specific types".[11] The "other specific types" are a collection of a few dozen individual causes.[11] Diabetes is a more variable disease than once thought and people may have combinations of forms.[37] The term "diabetes", without qualification, usually refers to diabetes mellitus.
Inhalable insulin has been developed.[125] The original products were withdrawn due to side effects.[125] Afrezza, under development by the pharmaceuticals company MannKind Corporation, was approved by the United States Food and Drug Administration (FDA) for general sale in June 2014.[126] An advantage to inhaled insulin is that it may be more convenient and easy to use.[127]
People with type 1 diabetes are unable to produce any insulin at all. People with type 2 diabetes still produce insulin, however, the cells in the muscles, liver and fat tissue are inefficient at absorbing the insulin and cannot regulate glucose well. As a result, the body tries to compensate by having the pancreas pump out more insulin. But the pancreas slowly loses the ability to produce enough insulin, and as a result, the cells don’t get the energy they need to function properly.
Type 2 diabetes is due to insufficient insulin production from beta cells in the setting of insulin resistance.[13] Insulin resistance, which is the inability of cells to respond adequately to normal levels of insulin, occurs primarily within the muscles, liver, and fat tissue.[44] In the liver, insulin normally suppresses glucose release. However, in the setting of insulin resistance, the liver inappropriately releases glucose into the blood.[10] The proportion of insulin resistance versus beta cell dysfunction differs among individuals, with some having primarily insulin resistance and only a minor defect in insulin secretion and others with slight insulin resistance and primarily a lack of insulin secretion.[13]

Although many of the symptoms of type 1 and type 2 diabetes are similar, they present in very different ways. Many people with type 2 diabetes won’t have symptoms for many years. Then often the symptoms of type 2 diabetes develop slowly over the course of time. Some people with type 2 diabetes have no symptoms at all and don’t discover their condition until complications develop.
Is it your fault for getting type 2 diabetes? No – type 2 diabetes is not a personal failing. It develops through a combination of factors that are still being uncovered and better understood. Lifestyle (food, exercise, stress, sleep) certainly plays a major role, but genetics play a significant role as well. Type 2 diabetes is often described in the media as a result of being overweight, but the relationship is not that simple. Many overweight individuals never get type 2, and some people with type 2 were never overweight, (although obesity is probably an underlying cause of insulin resistance). To make matters worse, when someone gains weight (for whatever reason), the body makes it extremely difficult to lose the new weight and keep it off. If it were just a matter of choice or a bit of willpower, we would probably all be skinny. At its core, type 2 involves two physiological issues: resistance to the insulin made by the person’s beta cells and too little insulin production relative to the amount one needs.

Unlike many health conditions, diabetes is managed mostly by you, with support from your health care team (including your primary care doctor, foot doctor, dentist, eye doctor, registered dietitian nutritionist, diabetes educator, and pharmacist), family, and other important people in your life. Managing diabetes can be challenging, but everything you do to improve your health is worth it!
There is an overall lack of public awareness of the signs and symptoms of type 1 diabetes. Making yourself aware of the signs and symptoms of type 1 diabetes is a great way to be proactive about your health and the health of your family members. If you notice any of these signs or symptoms, it’s possible that you have (or your child has) type 1 diabetes. A doctor can make that diagnosis by checking blood glucose levels.

Considering that being overweight is a risk factor for diabetes, it sounds counterintuitive that shedding pounds could be one of the silent symptoms of diabetes. “Weight loss comes from two things,” says Dr. Cypess. “One, from the water that you lose [from urinating]. Two, you lose some calories in the urine and you don’t absorb all the calories from the sugar in your blood.” Once people learn they have diabetes and start controlling their blood sugar, they may even experience some weight gain—but “that’s a good thing,” says Dr. Cypess, because it means your blood sugar levels are more balanced.
Hypoglycemic reactions are promptly treated by giving carbohydrates (orange juice, hard candy, honey, or any sugary food); if necessary, subcutaneous or intramuscular glucagon or intravenous dextrose (if the patient is not conscious) is administered. Hyperglycemic crises are treated initially with prescribed intravenous fluids and insulin and later with potassium replacement based on laboratory values.
Exercise is very important if you have this health condition. Exercise makes cells more insulin sensitive, pulling glucose out of the blood. This brings down blood sugar, and more importantly, gives you better energy because the glucose is being transferred to the cells. Any type of exercise will do this, but extra benefit is gained when the activity helps build muscle, such as weight training or using resistance bands. The benefits of exercise on blood sugar last about 48-72 hours, so it is important for you to be physically active almost every day.
Blurred vision can result from elevated blood sugar. Similarly, fluid that is pulled from the cells into the bloodstream to dilute the sugar can also be pulled from the lenses of your eyes. When the lens of the eye becomes dry, the eye is unable to focus, resulting in blurry vision. It's important that all people diagnosed with type 2 diabetes have a dilated eye exam shortly after diagnosis. Damage to the eye can even occur before a diagnosis of diabetes exists.

Your doctor will carefully examine you at each visit for diabetes. In particular they will examine your cardiovascular system, eyes and neurological systems to detect any complications present. In the acute phase you may appear wasted and dehydrated. You may have difficulty breathing and have a sweet smell to your breath. In the later stages, your doctor will check your pulse, listen to your heart, measure your blood pressure (often lying and standing) and examine your limbs to detect any loss of sensation or ulcers.


There are a number of rare cases of diabetes that arise due to an abnormality in a single gene (known as monogenic forms of diabetes or "other specific types of diabetes").[10][13] These include maturity onset diabetes of the young (MODY), Donohue syndrome, and Rabson–Mendenhall syndrome, among others.[10] Maturity onset diabetes of the young constitute 1–5% of all cases of diabetes in young people.[38]
Jump up ^ Boussageon, R; Bejan-Angoulvant, T; Saadatian-Elahi, M; Lafont, S; Bergeonneau, C; Kassaï, B; Erpeldinger, S; Wright, JM; Gueyffier, F; Cornu, C (2011-07-26). "Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials". The BMJ. 343: d4169. doi:10.1136/bmj.d4169. PMC 3144314. PMID 21791495.
Originally described in approximately 30% of patients with type 1 diabetes mellitus, limited joint mobility occurs in 50% of patients older than age 10 years who have had diabetes for longer than 5 years. The condition restricts joint extension, making it difficult to press the hands flat against each other. The skin of patients with severe joint involvement has a thickened and waxy appearance.
"Brittle" diabetes, also known as unstable diabetes or labile diabetes, is a term that was traditionally used to describe the dramatic and recurrent swings in glucose levels, often occurring for no apparent reason in insulin-dependent diabetes. This term, however, has no biologic basis and should not be used.[39] Still, type 1 diabetes can be accompanied by irregular and unpredictable high blood sugar levels, frequently with ketosis, and sometimes with serious low blood sugar levels. Other complications include an impaired counterregulatory response to low blood sugar, infection, gastroparesis (which leads to erratic absorption of dietary carbohydrates), and endocrinopathies (e.g., Addison's disease).[39] These phenomena are believed to occur no more frequently than in 1% to 2% of persons with type 1 diabetes.[40]
The classic presenting symptoms of type 1 diabetes mellitus are discussed below. For some children, the first symptoms of diabetes mellitus are those of diabetic ketoacidosis. This is a serious and life-threatening condition, requiring immediate treatment. Ketoacidosis occurs due to a severe disturbance in the body’s metabolism. Without insulin, glucose cannot be taken up into cells. Instead fats are broken down for energy which can have acid by-products.  
People with diabetes either don't make insulin or their body's cells no longer are able to use the insulin, leading to high blood sugars. By definition, diabetes is having a blood glucose level of greater than or equal to126 milligrams per deciliter (mg/dL) after an 8-hour fast (not eating anything), or by having a non-fasting glucose level greater than or equal to 200 mg/dL along with symptoms of diabetes, or a glucose level of greater than or equal to 200 mg/dL on a 2-hour glucose tolerance test, or an A1C greater than or equal to 6.5%. Unless the person is having obvious symptoms of diabetes or is in a diabetic crisis, the diagnosis must be confirmed with a repeat test.
Glucose is a simple sugar found in food. Glucose is an essential nutrient that provides energy for the proper functioning of the body cells. Carbohydrates are broken down in the small intestine and the glucose in digested food is then absorbed by the intestinal cells into the bloodstream, and is carried by the bloodstream to all the cells in the body where it is utilized. However, glucose cannot enter the cells alone and needs insulin to aid in its transport into the cells. Without insulin, the cells become starved of glucose energy despite the presence of abundant glucose in the bloodstream. In certain types of diabetes, the cells' inability to utilize glucose gives rise to the ironic situation of "starvation in the midst of plenty". The abundant, unutilized glucose is wastefully excreted in the urine.
That said, some research does suggest that eating too many sweetened foods can affect type 2 diabetes risk, and with the Centers for Disease Control and Prevention (CDC) estimating that 30.3 million Americans have the disease — and that millions of more individuals are projected to develop it, too — understanding all the risk factors for the disease, including sugar consumption, is essential to help reverse the diabetes epidemic.
Insulin is only recommended for individuals for type 2 diabetics when they have not been able to get blood sugars low enough to prevent complications through other means. To avoid insulin, those with this health condition should work very hard to follow a healthy eating plan that includes a lot of vegetables and lean proteins, exercise every day, and keep stress in perspective. They also should take their oral drugs regularly. It can be difficult to follow these recommendations and the help of your doctor, nutritionist, diabetes educator, health coach, or integrative medicine practitioner may be helpful. If you who want to avoid taking medicine, work with health professionals who are knowledgeable about lifestyle medicine, and can help you understand how to fit the changes into your life.
Diabetes develops when the body can't make any or enough insulin, and/or when it can't properly use the insulin it makes. For some people with diabetes, the body becomes resistant to insulin. In these cases, insulin is still produced, but the body does not respond to the effects of insulin as it should. This is called insulin resistance. Whether from not enough insulin or the inability to use insulin properly, the result is high levels of glucose in the blood, or hyperglycemia.
Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[32][33] The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk.[26] Eating a lot of white rice appears to play a role in increasing risk.[34] A lack of exercise is believed to cause 7% of cases.[35] Persistent organic pollutants may play a role.[36]
To understand why insulin is important, it helps to know more about how the body uses food for energy. Your body is made up of millions of cells. To make energy, these cells need food in a very simple form. When you eat or drink, much of the food is broken down into a simple sugar called "glucose." Then, glucose is transported through the bloodstream to these cells where it can be used to provide the energy the body needs for daily activities.
Fatigue and muscle weakness occur because the glucose needed for energy simply is not metabolized properly. Weight loss in type 1 diabetes patients occurs partly because of the loss of body fluid and partly because in the absence of sufficient insulin the body begins to metabolize its own proteins and stored fat. The oxidation of fats is incomplete, however, and the fatty acids are converted into ketone bodies. When the kidney is no longer able to handle the excess ketones the patient develops ketosis. The overwhelming presence of the strong organic acids in the blood lowers the pH and leads to severe and potentially fatal ketoacidosis.

Symptoms of type 1 diabetes can start quickly, in a matter of weeks. Symptoms of type 2 diabetes often develop slowly—over the course of several years—and can be so mild that you might not even notice them. Many people with type 2 diabetes have no symptoms. Some people do not find out they have the disease until they have diabetes-related health problems, such as blurred vision or heart trouble.
Insulin-dependent diabetes mellitus is believed to result from autoimmune, environmental, and/or genetic factors. Whatever the cause, the end result is destruction of insulin-producing pancreatic beta cells, a dramatic decrease in the secretion of insulin, and hyperglycemia. Non-insulin-dependent diabetes mellitus is presumably heterogeneous in origin. It is associated with older age, obesity, a family history of diabetes, and ethnicity (genetic components). The vast majority of those with non-insulin-dependent diabetes are overweight Kahn (2003). This form of the disorder has a much slower rate of progression than insulin-dependent diabetes. Over time the ability to respond to insulin decreases, resulting in increased levels of blood glucose. The pancreatic secretion of insulin increases in an attempt to compensate for the elevated levels of glucose. If the condition is untreated, the pancreatic production of insulin decreases and may even cease.

Diabetes may have symptoms in some people, and no symptoms in others. Generally, people with Type 1 diabetes have increased thirst (polydipsia), frequent urination (polyuria), and increased hunger (polyphagia). Symptoms may develop over weeks to months.  Untreated, this condition may cause a person to lose consciousness and become very ill (diabetic ketoacidosis).

Insulin is a hormone made by your pancreas that acts like a key to let blood sugar into the cells in your body for use as energy. If you have type 2 diabetes, cells don’t respond normally to insulin; this is called insulin resistance. Your pancreas makes more insulin to try to get cells to respond. Eventually your pancreas can’t keep up, and your blood sugar rises, setting the stage for prediabetes and type 2 diabetes. High blood sugar is damaging to the body and can cause other serious health problems, such as heart disease, vision loss, and kidney disease.


Diabetes mellitus has been recorded in all species but is most commonly seen in middle-aged to older, obese, female dogs. A familial predisposition has been suggested. It is possible to identify two types of diabetes, corresponding to the disease in humans, depending on the response to an intravenous glucose tolerance test. Type I is insulin-dependent and comparable to the juvenile onset form of the disease in children in which there is an absolute deficiency of insulin—there is a very low initial blood insulin level and a low response to the injected glucose. This form is seen in a number of dog breeds, particularly the Keeshond, Doberman pinscher, German shepherd dog, Poodle, Golden retriever and Labrador retriever.
If genetics has taught us anything about diabetes, it's that, for most people, genes aren't the whole story. True, a few rare kinds of diabetes—including those collectively called MODY for maturity-onset diabetes of the young—have been traced to defects in a single gene. But for other types of diabetes, hereditary factors are still not well understood.
Management. There is no cure for diabetes; the goal of treatment is to maintain blood glucose and lipid levels within normal limits and to prevent complications. In general, good control is achieved when the following occur: fasting plasma glucose is within a specific range (set by health care providers and the individual), glycosylated hemoglobin tests show that blood sugar levels have stayed within normal limits from one testing period to the next, the patient's weight is normal, blood lipids remain within normal limits, and the patient has a sense of health and well-being.

Insulin Therapy. Exogenous insulin is given to patients with diabetes mellitus as a supplement to the insufficient amount of endogenous insulin that they produce. In some cases, this must make up for an absolute lack of insulin from the pancreas. Exogenous insulin is available in various types. It must be given by injection, usually subcutaneously, and because it is a potent drug, the dosage must be measured meticulously. Commonly, regular insulin, which is a fast-acting insulin with a short span of action, is mixed with one of the longer-acting insulins and both types are administered in one injection.
Brittle diabetics are a subgroup of Type I where patients have frequent and rapid swings of blood sugar levels between hyperglycemia (a condition where there is too much glucose or sugar in the blood) and hypoglycemia (a condition where there are abnormally low levels of glucose or sugar in the blood). These patients may require several injections of different types of insulin during the day to keep the blood sugar level within a fairly normal range.
In type 1 diabetes, other symptoms to watch for include unexplained weight loss, lethargy, drowsiness, and hunger. Symptoms sometimes occur after a viral illness. In some cases, a person may reach the point of diabetic ketoacidosis (DKA) before a type 1 diagnosis is made. DKA occurs when blood glucose is dangerously high and the body can't get nutrients into the cells because of the absence of insulin. The body then breaks down muscle and fat for energy, causing an accumulation of ketones in the blood and urine. Symptoms of DKA include a fruity odor on the breath; heavy, taxed breathing; and vomiting. If left untreated, DKA can result in stupor, unconsciousness, and even death.

Low glycemic index foods also may be helpful. The glycemic index is a measure of how quickly a food causes a rise in your blood sugar. Foods with a high glycemic index raise your blood sugar quickly. Low glycemic index foods may help you achieve a more stable blood sugar. Foods with a low glycemic index typically are foods that are higher in fiber.
Diabetic ketoacidosis can be caused by infections, stress, or trauma, all of which may increase insulin requirements. In addition, missing doses of insulin is also an obvious risk factor for developing diabetic ketoacidosis. Urgent treatment of diabetic ketoacidosis involves the intravenous administration of fluid, electrolytes, and insulin, usually in a hospital intensive care unit. Dehydration can be very severe, and it is not unusual to need to replace 6-7 liters of fluid when a person presents in diabetic ketoacidosis. Antibiotics are given for infections. With treatment, abnormal blood sugar levels, ketone production, acidosis, and dehydration can be reversed rapidly, and patients can recover remarkably well.
In patients with type 2 diabetes, stress, infection, and medications (such as corticosteroids) can also lead to severely elevated blood sugar levels. Accompanied by dehydration, severe blood sugar elevation in patients with type 2 diabetes can lead to an increase in blood osmolality (hyperosmolar state). This condition can worsen and lead to coma (hyperosmolar coma). A hyperosmolar coma usually occurs in elderly patients with type 2 diabetes. Like diabetic ketoacidosis, a hyperosmolar coma is a medical emergency. Immediate treatment with intravenous fluid and insulin is important in reversing the hyperosmolar state. Unlike patients with type 1 diabetes, patients with type 2 diabetes do not generally develop ketoacidosis solely on the basis of their diabetes. Since in general, type 2 diabetes occurs in an older population, concomitant medical conditions are more likely to be present, and these patients may actually be sicker overall. The complication and death rates from hyperosmolar coma is thus higher than in diabetic ketoacidosis.
Diabetes is among the leading causes of kidney failure, but its frequency varies between populations and is also related to the severity and duration of the disease. Several measures to slow down the progress of renal damage have been identified. They include control of high blood glucose, control of high blood pressure, intervention with medication in the early stage of kidney damage, and restriction of dietary protein. Screening and early detection of diabetic kidney disease are an important means of prevention.
Jump up ^ Palmer, Suetonia C.; Mavridis, Dimitris; Nicolucci, Antonio; Johnson, David W.; Tonelli, Marcello; Craig, Jonathan C.; Maggo, Jasjot; Gray, Vanessa; De Berardis, Giorgia; Ruospo, Marinella; Natale, Patrizia; Saglimbene, Valeria; Badve, Sunil V.; Cho, Yeoungjee; Nadeau-Fredette, Annie-Claire; Burke, Michael; Faruque, Labib; Lloyd, Anita; Ahmad, Nasreen; Liu, Yuanchen; Tiv, Sophanny; Wiebe, Natasha; Strippoli, Giovanni F.M. (19 July 2016). "Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes". JAMA: the Journal of the American Medical Association. 316 (3): 313–24. doi:10.1001/jama.2016.9400. PMID 27434443.
Type 2 DM is primarily due to lifestyle factors and genetics.[45] A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[16] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11]
Creatinine is a chemical waste molecule that is generated from muscle metabolism. Creatinine is produced from creatine, a molecule of major importance for energy production in muscles. Creatinine has been found to be a fairly reliable indicator of kidney function. As the kidneys become impaired the creatinine level in the blood will rise. Normal levels of creatinine in the blood vary from gender and age of the individual.
Other potentially important mechanisms associated with type 2 diabetes and insulin resistance include: increased breakdown of lipids within fat cells, resistance to and lack of incretin, high glucagon levels in the blood, increased retention of salt and water by the kidneys, and inappropriate regulation of metabolism by the central nervous system.[10] However, not all people with insulin resistance develop diabetes, since an impairment of insulin secretion by pancreatic beta cells is also required.[13]
Childhood obesity rates are rising, and so are the rates of type 2 diabetes in youth. More than 75% of children with type 2 diabetes have a close relative who has it, too. But it’s not always because family members are related; it can also be because they share certain habits that can increase their risk. Parents can help prevent or delay type 2 diabetes by developing a plan for the whole family:
Because people with type 2 diabetes produce some insulin, ketoacidosis does not usually develop even when type 2 diabetes is untreated for a long time. Rarely, the blood glucose levels become extremely high (even exceeding 1,000 mg/dL). Such high levels often happen as the result of some superimposed stress, such as an infection or drug use. When the blood glucose levels get very high, people may develop severe dehydration, which may lead to mental confusion, drowsiness, and seizures, a condition called hyperosmolar hyperglycemic state. Currently, many people with type 2 diabetes are diagnosed by routine blood glucose testing before they develop such severely high blood glucose levels.
People with diabetes can benefit from education about the disease and treatment, good nutrition to achieve a normal body weight, and exercise, with the goal of keeping both short-term and long-term blood glucose levels within acceptable bounds. In addition, given the associated higher risks of cardiovascular disease, lifestyle modifications are recommended to control blood pressure.[80][81]
Jock itch is an itchy red rash that appears in the groin area. The rash may be caused by a bacterial or fungal infection. People with diabetes and those who are obese are more susceptible to developing jock itch. Antifungal shampoos, creams, and pills may be needed to treat fungal jock itch. Bacterial jock itch may be treated with antibacterial soaps and topical and oral antibiotics.
Several common medications can impair the body's use of insulin, causing a condition known as secondary diabetes. These medications include treatments for high blood pressure (furosemide, clonidine, and thiazide diuretics), drugs with hormonal activity (oral contraceptives, thyroid hormone, progestins, and glucocorticorids), and the anti-inflammation drug indomethacin. Several drugs that are used to treat mood disorders (such as anxiety and depression) also can impair glucose absorption. These drugs include haloperidol, lithium carbonate, phenothiazines, tricyclic antidepressants, and adrenergic agonists. Other medications that can cause diabetes symptoms include isoniazid, nicotinic acid, cimetidine, and heparin. A 2004 study found that low levels of the essential mineral chromium in the body may be linked to increased risk for diseases associated with insulin resistance.
Glucose is vital to your health because it's an important source of energy for the cells that make up your muscles and tissues. It's also your brain's main source of fuel. If you have diabetes, no matter what type, it means you have too much glucose in your blood, although the causes may differ. Too much glucose can lead to serious health problems.
×