Type 2 diabetes was also previously referred to as non-insulin dependent diabetes mellitus (NIDDM), or adult-onset diabetes mellitus (AODM). In type 2 diabetes, patients can still produce insulin, but do so relatively inadequately for their body's needs, particularly in the face of insulin resistance as discussed above. In many cases this actually means the pancreas produces larger than normal quantities of insulin. A major feature of type 2 diabetes is a lack of sensitivity to insulin by the cells of the body (particularly fat and muscle cells).
The progression of nephropathy in patients can be significantly slowed by controlling high blood pressure, and by aggressively treating high blood sugar levels. Angiotensin converting enzyme inhibitors (ACE inhibitors) or angiotensin receptor blockers (ARBs) used in treating high blood pressure may also benefit kidney disease in patients with diabetes.
Hyperglycemic hyperosmolar nonketotic syndrome (HHNS). Signs and symptoms of this life-threatening condition include a blood sugar reading higher than 600 mg/dL (33.3 mmol/L), dry mouth, extreme thirst, fever greater than 101 F (38 C), drowsiness, confusion, vision loss, hallucinations and dark urine. Your blood sugar monitor may not be able to give you an exact reading at such high levels and may instead just read "high."
What medication is available for diabetes? Diabetes causes blood sugar levels to rise. The body may stop producing insulin, the hormone that regulates blood sugar, and this results in type 1 diabetes. In people with type 2 diabetes, insulin is not working effectively. Learn about the range of treatments for each type and recent medical developments here. Read now
There are a number of medications and other health problems that can predispose to diabetes.[39] Some of the medications include: glucocorticoids, thiazides, beta blockers, atypical antipsychotics,[40] and statins.[41] Those who have previously had gestational diabetes are at a higher risk of developing type 2 diabetes.[23] Other health problems that are associated include: acromegaly, Cushing's syndrome, hyperthyroidism, pheochromocytoma, and certain cancers such as glucagonomas.[39] Testosterone deficiency is also associated with type 2 diabetes.[42][43]

In the exchange system, foods are divided into six food groups (starch, meat, vegetable, fruit, milk, and fat) and the patient is taught to select items from each food group as ordered. Items in each group may be exchanged for each other in specified portions. The patient should avoid concentrated sweets and should increase fiber in the diet. Special dietetic foods are not necessary. Patient teaching should emphasize that a diabetic diet is a healthy diet that all members of the family can follow.

Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) refer to levels of blood glucose concentration above the normal range, but below those which are diagnostic for diabetes. Subjects with IGT and/or IFG are at substantially higher risk of developing diabetes and cardiovascular disease than those with normal glucose tolerance. The benefits of clinical intervention in subjects with moderate glucose intolerance is a topic of much current interest.

"We know that there is a very large genetic component," Rettinger says. "A person with a first-degree relative with Type 2 diabetes has a five to 10 time higher risk of developing diabetes than a person the same age and weight without a family history of Type 2 diabetes." Heredity actually plays a larger role in Type 2 diabetes than Type 1, Rettinger says.

Glucose is a simple sugar found in food. Glucose is an essential nutrient that provides energy for the proper functioning of the body cells. Carbohydrates are broken down in the small intestine and the glucose in digested food is then absorbed by the intestinal cells into the bloodstream, and is carried by the bloodstream to all the cells in the body where it is utilized. However, glucose cannot enter the cells alone and needs insulin to aid in its transport into the cells. Without insulin, the cells become starved of glucose energy despite the presence of abundant glucose in the bloodstream. In certain types of diabetes, the cells' inability to utilize glucose gives rise to the ironic situation of "starvation in the midst of plenty". The abundant, unutilized glucose is wastefully excreted in the urine.

Although age of onset and length of the disease process are related to the frequency with which vascular, renal, and neurologic complications develop, there are some patients who remain relatively free of sequelae even into the later years of their lives. Because diabetes mellitus is not a single disease but rather a complex constellation of syndromes, each patient has a unique response to the disease process.
Complications of diabetes are responsible for considerable morbidity and mortality. The acute complications of diabetes are hypo- and hyperglycemic coma and infections. The chronic complications include microvascular complications such as retinopathy and nephropathy, and the macrovascular complications of heart disease and stroke. Diabetes mellitus is the commonest cause of blindness and renal failure in the UK and the USA. Other common complications include autonomic and peripheral neuropathy. A combination of vascular and neuropathic disturbances results in a high prevalence of impotence in men with diabetes. Peripheral neuropathy causes lack of sensation in the feet which can cause minor injuries to go unnoticed, become infected and, with circulatory problems obstructing healing, ulceration and gangrene are serious risks and amputation is not uncommon. Evidence from meta-analysis of studies of the relationship between glycemic control and microvascular complications (Wang, Lau, & Chalmers, 1993), and from the longitudinal multicenter Diabetes Control and Complications Trial (DCCT) in the USA (DCCT Research Group, 1993), have established a clear relationship between improved blood glucose control and reduction of risk of retinopathy and other microvascular complications in insulin-dependent diabetes mellitus (IDDM). It is likely that there would be similar findings for noninsulin-dependent diabetes mellitus (NIDDM) though the studies did not include NIDDM patients. However, the DCCT included highly selected, well-motivated, well-educated and well-supported patients, cared for by well-staffed diabetes care teams involving educators and psychologists as well as diabetologists and diabetes specialist nurses.

Type 2 diabetes typically starts with insulin resistance. That is, the cells of the body resist insulin’s efforts to escort glucose into the cells. What causes insulin resistance? It appears to be caused by an accumulation of microscopic fat particles within muscle and liver cells.4 This fat comes mainly from the diet—chicken fat, beef fat, cheese fat, fish fat, and even vegetable fat. To try to overcome insulin resistance, the pancreas produces extra insulin. When the pancreas can no longer keep up, blood sugar rises. The combination of insulin resistance and pancreatic cell failure leads to type 2 diabetes.
Can type 2 diabetes be prevented? It is possible to reduce the risk of developing type 2 diabetes, although the underlying risk of type 2 diabetes depends strongly on genetic factors. But there was less type 2 diabetes around some years ago when people had a more active life and didn’t eat a modern Western diet. So it is fair to say that risk of getting type 2 diabetes is based on a genetic predisposition that is aggravated by lifestyle. Type 2 diabetes is associated with obesity, as well as a variety of environmental factors. To lower the risk of developing type 2 diabetes (as well as other diseases), it is highly recommended to exercise often, eat healthily, and maintain a healthy weight. 
The pain of diabetic nerve damage may respond to traditional treatments with certain medications such as gabapentin (Neurontin), phenytoin (Dilantin), and carbamazepine (Tegretol) that are traditionally used in the treatment of seizure disorders. Amitriptyline (Elavil, Endep) and desipramine (Norpraminine) are medications that are traditionally used for depression. While many of these medications are not indicated specifically for the treatment of diabetes related nerve pain, they are used by physicians commonly.
People with diabetes can benefit from education about the disease and treatment, good nutrition to achieve a normal body weight, and exercise, with the goal of keeping both short-term and long-term blood glucose levels within acceptable bounds. In addition, given the associated higher risks of cardiovascular disease, lifestyle modifications are recommended to control blood pressure.[80][81]
Your doctor will carefully examine you at each visit for diabetes. In particular they will examine your cardiovascular system, eyes and neurological systems to detect any complications present. In the acute phase you may appear wasted and dehydrated. You may have difficulty breathing and have a sweet smell to your breath. In the later stages, your doctor will check your pulse, listen to your heart, measure your blood pressure (often lying and standing) and examine your limbs to detect any loss of sensation or ulcers.
Awareness about the signs and symptoms and periodic screening especially in the presence of risk factors and warning signs of diabetes, would go a long way in preventing new cases of diabetes by providing an opportunity to intervene at the stage of prediabetes. It is evident that diabetes can be prevented among prediabetic individuals by improvements in physical activity and diet habits. Such strategies will also prevent development of diabetic complications to a great extent. Patient empowerment is vital in diabetes management. This can be done through patient education and sharing information on management and preventive aspects of diabetes.
People with Type 1 diabetes are usually totally dependent on insulin injections for survival. Such people require daily administration of insulin. The majority of people suffering from diabetes have the Type 2 form. Although they do not depend on insulin for survival, about one third of sufferers needs insulin for reducing their blood glucose levels.
One of the key factors in Joslin’s treatment of diabetes is tight blood glucose control, so be certain that your treatment helps get your blood glucose readings as close to normal as safely possible. Patients should discuss with their doctors what their target blood glucose range is. It is also important to determine what your goal is for A1C readings (a test that determines how well your diabetes is controlled over the past 2-3 months). By maintaining blood glucose in the desired range, you’ll likely avoid many of the complications some people with diabetes face.
According to the Mayo Clinic, doctors may use other tests to diagnose diabetes. For example, they may conduct a fasting blood glucose test, which is a blood glucose test done after a night of fasting. While a fasting blood sugar level of less than 100 milligrams per deciliter (mg/dL) is normal, one that is between 100 to 125 mg/dL signals prediabetes, and a reading that reaches 126 mg/dL on two separate occasions means you have diabetes.