A: There are two scenarios to consider here, pregnant patients who have diabetes and pregnant patients who have gestational diabetes. Gestational diabetes describes hyperglycemia discovered during pregnancy. This hyperglycemia often corrects itself after pregnancy, but women who experience gestational diabetes are at higher for developing type-2 diabetes later in life when compared to women who experience no hyperglycemia during pregnancy. Regardless of the type of diabetes a pregnant patient has, her physician will closely monitor her disease and its response to therapy. Proper glucose control is important not only for the health of the mother, but also her developing child.
By simultaneously considering insulin secretion and insulin action in any given individual, it becomes possible to account for the natural history of diabetes in that person (e.g., remission in a patient with T1 diabetes or ketoacidosis in a person with T2DM). Thus, diabetes mellitus may be the result of absolute insulin deficiency, or of absolute insulin resistance, or a combination of milder defects in both insulin secretion and insulin action.1 Collectively, the syndromes of diabetes mellitus are the most common endocrine/metabolic disorders of childhood and adolescence. The application of molecular biologic tools continues to provide remarkable insights into the etiology, pathophysiology, and genetics of the various forms of diabetes mellitus that result from deficient secretion of insulin or its action at the cellular level.
The United Kingdom Prospective Diabetes Study (UKPDS) was a clinical study conducted by Z that was published in The Lancet in 1998. Around 3,800 people with type 2 diabetes were followed for an average of ten years, and were treated with tight glucose control or the standard of care, and again the treatment arm had far better outcomes. This confirmed the importance of tight glucose control, as well as blood pressure control, for people with this condition.[86][132][133]
Oral medications are available to lower blood glucose in Type II diabetics. In 1990, 23.4 outpatient prescriptions for oral antidiabetic agents were dispensed. By 2001, the number had increased to 91.8 million prescriptions. Oral antidiabetic agents accounted for more than $5 billion dollars in worldwide retail sales per year in the early twenty-first century and were the fastest-growing segment of diabetes drugs. The drugs first prescribed for Type II diabetes are in a class of compounds called sulfonylureas and include tolbutamide, tolazamide, acetohexamide, and chlorpropamide. Newer drugs in the same class are now available and include glyburide, glimeperide, and glipizide. How these drugs work is not well understood, however, they seem to stimulate cells of the pancreas to produce more insulin. New medications that are available to treat diabetes include metformin, acarbose, and troglitizone. The choice of medication depends in part on the individual patient profile. All drugs have side effects that may make them inappropriate for particular patients. Some for example, may stimulate weight gain or cause stomach irritation, so they may not be the best treatment for someone who is already overweight or who has stomach ulcers. Others, like metformin, have been shown to have positive effects such as reduced cardiovascular mortality, but but increased risk in other situations. While these medications are an important aspect of treatment for Type II diabetes, they are not a substitute for a well planned diet and moderate exercise. Oral medications have not been shown effective for Type I diabetes, in which the patient produces little or no insulin.
Most cases of diabetes involve many genes, with each being a small contributor to an increased probability of becoming a type 2 diabetic.[10] If one identical twin has diabetes, the chance of the other developing diabetes within his lifetime is greater than 90%, while the rate for nonidentical siblings is 25–50%.[13] As of 2011, more than 36 genes had been found that contribute to the risk of type 2 diabetes.[37] All of these genes together still only account for 10% of the total heritable component of the disease.[37] The TCF7L2 allele, for example, increases the risk of developing diabetes by 1.5 times and is the greatest risk of the common genetic variants.[13] Most of the genes linked to diabetes are involved in beta cell functions.[13]
Aspirin should be used as secondary prophylaxis in all diabetic people with evidence of macrovascular disease, and it should be strongly considered as primary prevention in diabetic subjects with other risk factors for macrovascular disease, such as hypertension, cigarette smoking, dyslipidemia, obesity, and albuminuria (macro or micro).228 Because of the platelet defects associated with diabetes, it is recommended that the dose of aspirin should be 300 mg per day,228–230 although the American Diabetes Association’s position statement (http://www.diabetes.org/DiabetesCare/supplement198/s45.htm) advocates a dose of 81 to 325 mg enteric-coated aspirin per day. If the patient cannot tolerate aspirin, then clopidogrel231 can be used.

The most common complication of treating high blood glucose levels is low blood glucose levels (hypoglycemia). The risk is greatest for older people who are frail, who are sick enough to require frequent hospital admissions, or who are taking several drugs. Of all available drugs to treat diabetes, long-acting sulfonylurea drugs are most likely to cause low blood glucose levels in older people. When they take these drugs, they are also more likely to have serious symptoms, such as fainting and falling, and to have difficulty thinking or using parts of the body due to low blood glucose levels.

In countries using a general practitioner system, such as the United Kingdom, care may take place mainly outside hospitals, with hospital-based specialist care used only in case of complications, difficult blood sugar control, or research projects. In other circumstances, general practitioners and specialists share care in a team approach. Home telehealth support can be an effective management technique.[100]
Findings from the Diabetes Control and Complications Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have clearly shown that aggressive and intensive control of elevated levels of blood sugar in patients with type 1 and type 2 diabetes decreases the complications of nephropathy, neuropathy, retinopathy, and may reduce the occurrence and severity of large blood vessel diseases. Aggressive control with intensive therapy means achieving fasting glucose levels between 70-120 mg/dl; glucose levels of less than 160 mg/dl after meals; and a near normal hemoglobin A1c levels (see below).

The 1989 "St. Vincent Declaration"[117][118] was the result of international efforts to improve the care accorded to those with diabetes. Doing so is important not only in terms of quality of life and life expectancy but also economically – expenses due to diabetes have been shown to be a major drain on health – and productivity-related resources for healthcare systems and governments.
People with full-blown type 2 diabetes are not able to use the hormone insulin properly, and have what’s called insulin resistance. Insulin is necessary for glucose, or sugar, to get from your blood into your cells to be used for energy. When there is not enough insulin — or when the hormone doesn’t function as it should — glucose accumulates in the blood instead of being used by the cells. This sugar accumulation may lead to the aforementioned complications.