They may need to take medications in order to keep glucose levels within a healthy range. Medications for type 2 diabetes are usually taken by mouth in the form of tablets and should always be taken around meal times and as prescribed by the doctor. However, if blood glucose is not controlled by oral medications, a doctor may recommend insulin injections.
On behalf of the millions of Americans who live with or are at risk for diabetes, we are committed to helping you understand this chronic disease. Help us set the record straight and educate the world about diabetes and its risk factors by sharing the common questions and answers below. If you're new to type 2 diabetes, join our Living With Type 2 Diabetes program to get more facts.
When the blood glucose level rises above 160 to 180 mg/dL, glucose spills into the urine. When the level of glucose in the urine rises even higher, the kidneys excrete additional water to dilute the large amount of glucose. Because the kidneys produce excessive urine, people with diabetes urinate large volumes frequently (polyuria). The excessive urination creates abnormal thirst (polydipsia). Because excessive calories are lost in the urine, people may lose weight. To compensate, people often feel excessively hungry.
There’s no cure for type 1 diabetes. People with type 1 diabetes don’t produce insulin, so it must be regularly injected into your body. Some people take injections into the soft tissue, such as the stomach, arm, or buttocks, several times per day. Other people use insulin pumps. Insulin pumps supply a steady amount of insulin into the body through a small tube.
Infections. Poorly controlled diabetes can lead to a variety of tissue infections. The most commonly encountered is a yeast infection (Candida) and the presence of dry mouth further increases one’s risk (see PATIENT INFORMATION SHEET – Oral Yeast Infections). Typically, affected areas appear redder than the surrounding tissue and commonly affected sites include the tongue, palate, cheeks, gums, or corners of the mouth (see Right). There is conflicting data regarding cavity risk in the diabetic patient, but those who have dry mouth are clearly at increased risk for developing cavities.
Lose Weight: If you are overweight, losing weight can help your body use insulin. In fact, the American Diabetes Association recommends that people with diabetes lose about 7 percent of their body weight, which should improve the way your body uses insulin and reduces insulin resistance. In addition, weight loss can help lower blood pressure, reduce joint pain, increase energy, and reduce sleep apnea and cholesterol. It can also reduce your risk of other diseases, including heart disease.
Schedule a yearly physical exam and regular eye exams. Your regular diabetes checkups aren't meant to replace regular physicals or routine eye exams. During the physical, your doctor will look for any diabetes-related complications, as well as screen for other medical problems. Your eye care specialist will check for signs of retinal damage, cataracts and glaucoma.
Your body is like a car—it needs fuel to function. Its primary source of fuel is glucose (sugar), which is gained from foods that contain carbohydrates that get broken down. Insulin, a hormone produced by the pancreas, takes sugar from your blood to your cells to use for energy. However, when you have diabetes, either your pancreas isn't making enough insulin or the insulin that your body is making isn't being used the way it's supposed to be, typically because the cells become resistant to it.
Nerve damage from diabetes is called diabetic neuropathy and is also caused by disease of small blood vessels. In essence, the blood flow to the nerves is limited, leaving the nerves without blood flow, and they get damaged or die as a result (a term known as ischemia). Symptoms of diabetic nerve damage include numbness, burning, and aching of the feet and lower extremities. When the nerve disease causes a complete loss of sensation in the feet, patients may not be aware of injuries to the feet, and fail to properly protect them. Shoes or other protection should be worn as much as possible. Seemingly minor skin injuries should be attended to promptly to avoid serious infections. Because of poor blood circulation, diabetic foot injuries may not heal. Sometimes, minor foot injuries can lead to serious infection, ulcers, and even gangrene, necessitating surgical amputation of toes, feet, and other infected parts.
Insulin-dependent diabetes mellitus is believed to result from autoimmune, environmental, and/or genetic factors. Whatever the cause, the end result is destruction of insulin-producing pancreatic beta cells, a dramatic decrease in the secretion of insulin, and hyperglycemia. Non-insulin-dependent diabetes mellitus is presumably heterogeneous in origin. It is associated with older age, obesity, a family history of diabetes, and ethnicity (genetic components). The vast majority of those with non-insulin-dependent diabetes are overweight Kahn (2003). This form of the disorder has a much slower rate of progression than insulin-dependent diabetes. Over time the ability to respond to insulin decreases, resulting in increased levels of blood glucose. The pancreatic secretion of insulin increases in an attempt to compensate for the elevated levels of glucose. If the condition is untreated, the pancreatic production of insulin decreases and may even cease.
This content is provided as a service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health. The NIDDK translates and disseminates research findings through its clearinghouses and education programs to increase knowledge and understanding about health and disease among patients, health professionals, and the public. Content produced by the NIDDK is carefully reviewed by NIDDK scientists and other experts.
Type 2 Diabetes: Accounting for 90 to 95 percent of those with diabetes, type 2 is the most common form. Usually, it's diagnosed in adults over age 40 and 80 percent of those with type 2 diabetes are overweight. Because of the increase in obesity, type 2 diabetes is being diagnosed at younger ages, including in children. Initially in type 2 diabetes, insulin is produced, but the insulin doesn't function properly, leading to a condition called insulin resistance. Eventually, most people with type 2 diabetes suffer from decreased insulin production.

Although some people with this type of diabetes are thin, the majority of people (90%) are overweight. Losing weight, even 2 kg to 5 kg (5 lbs to 10 lbs) can help lower blood glucose levels. For many people, following a healthy diet and an exercise program may be all that is needed to help control glucose levels. For others, healthy eating and exercise alone aren't enough to lower blood glucose levels.
People with type 1 diabetes are unable to produce any insulin at all. People with type 2 diabetes still produce insulin, however, the cells in the muscles, liver and fat tissue are inefficient at absorbing the insulin and cannot regulate glucose well. As a result, the body tries to compensate by having the pancreas pump out more insulin. But the pancreas slowly loses the ability to produce enough insulin, and as a result, the cells don’t get the energy they need to function properly.
Autonomic changes involving cardiovascular control (eg, heart rate, postural responses) have been described in as many as 40% of children with diabetes. Cardiovascular control changes become more likely with increasing duration and worsening control. [18] In a study by 253 patients with type 1 diabetes (mean age at baseline 14.4 y), Cho et al reported that the prevalence of cardiac autonomic dysfunction increases in association with higher body mass index and central adiposity. [19]
Type 2 diabetes (formerly named non-insulin-dependent) which results from the body's inability to respond properly to the action of insulin produced by the pancreas. Type 2 diabetes is much more common and accounts for around 90% of all diabetes cases worldwide. It occurs most frequently in adults, but is being noted increasingly in adolescents as well.
This is specific to type 2 diabetes. It occurs when insulin is produced normally in the pancreas, but the body is still unable move glucose into the cells for fuel. At first, the pancreas will create more insulin to overcome the body’s resistance. Eventually the cells “wear out.” At that point the body slows insulin production, leaving too much glucose in the blood. This is known as prediabetes. A person with prediabetes has a blood sugar level higher than normal but not high enough for a diagnosis of diabetes. Unless tested, the person may not be aware, as there are no clear symptoms. Type 2 diabetes occurs as insulin production continues to decrease and resistance increases.

It is a considerable challenge to obtain the goals of the intensively treated patients in the DCCT with the vast majority of people with diabetes given the more limited health care resources typically available in routine practice. If diabetes control can be improved without significant damage to quality of life, the economic, health, and quality of life savings associated with a reduction in complications in later life will be vast. Although some people who have had poorly controlled diabetes over many years do not develop complications, complications commonly arise after 15–20 years of diabetes and individuals in their 40s or even 30s may develop several complications in rapid succession. However, up until the early 1980s, patients had no way of monitoring their own blood glucose levels at home. Urine glucose monitoring only told them when their blood glucose had exceeded the renal threshold of approximately 10 mmol/L (i.e., was far too high), without being able to discriminate between the too high levels of 7–10 mmol/L or the hypoglycemic levels below 4 mmol/L. Clinics relied on random blood glucose testing and there were no measures of average blood glucose over a longer period. Since the 1980s there have been measures of glycosylated hemoglobin (GHb, HbA1, or HbA1c) which indicate average blood glucose over a six to eight week period and measures of glycosylated protein, fructosamine, which indicates average blood glucose over a two-week period. Blood-glucose meters for patients were first introduced in the early 1980s and the accuracy and convenience of the meters and the reagent strips they use has improved dramatically since early models. By the late 1990s blood-glucose monitoring is part of the daily routine for most people using insulin in developed countries. Blood-glucose monitoring is less often prescribed for tablet- and diet-alone-treated patients, financial reasons probably being allowed to outweigh the educational value of accurate feedback in improving control long term. The reduced risk of hypoglycemia and diabetic ketoacidosis in NIDDM patients not using insulin means that acute crises rarely arise in these patients though their risk of long-term complications is at least as great as in IDDM and might be expected to be reduced if feedback from blood-glucose monitoring were provided.


In ‘type 2 diabetes’ (previously called non-insulin-dependent diabetes mellitus), which accounts for 90% of all diabetes, the beta cells do not stop making insulin completely, but the insulin produced does not work properly so it struggles to store the sugar found in the blood. As a consequence, the pancreas has to produce more insulin to compensate for this reduction in insulin function. This is called insulin resistance and is commonly linked to obesity. This type of diabetes is seen more commonly over the age of 40 years but can occur at any age.  

In type 1 diabetes, other symptoms to watch for include unexplained weight loss, lethargy, drowsiness, and hunger. Symptoms sometimes occur after a viral illness. In some cases, a person may reach the point of diabetic ketoacidosis (DKA) before a type 1 diagnosis is made. DKA occurs when blood glucose is dangerously high and the body can't get nutrients into the cells because of the absence of insulin. The body then breaks down muscle and fat for energy, causing an accumulation of ketones in the blood and urine. Symptoms of DKA include a fruity odor on the breath; heavy, taxed breathing; and vomiting. If left untreated, DKA can result in stupor, unconsciousness, and even death.
Per the WHO, people with fasting glucose levels from 6.1 to 6.9 mmol/l (110 to 125 mg/dl) are considered to have impaired fasting glucose.[67] people with plasma glucose at or above 7.8 mmol/l (140 mg/dl), but not over 11.1 mmol/l (200 mg/dl), two hours after a 75 gram oral glucose load are considered to have impaired glucose tolerance. Of these two prediabetic states, the latter in particular is a major risk factor for progression to full-blown diabetes mellitus, as well as cardiovascular disease.[68] The American Diabetes Association (ADA) since 2003 uses a slightly different range for impaired fasting glucose of 5.6 to 6.9 mmol/l (100 to 125 mg/dl).[69]
Vulvodynia or vaginal pain, genital pain is a condition in which women have chronic vulvar pain with no known cause. There are two types of vulvodynia, generalized vulvodynia and vulvar vestibulitis. Researchers are trying to find the causes of vulvodynia, for example, nerve irritation, genetic factors, hypersensitivity to yeast infections, muscle spasms, and hormonal changes.The most common symptoms of vaginal pain (vulvodynia) is burning, rawness, itching, stinging, aching, soreness, and throbbing. There are a variety of treatments that can ease the symptoms of vulvodynia (vaginal pain).
Although age of onset and length of the disease process are related to the frequency with which vascular, renal, and neurologic complications develop, there are some patients who remain relatively free of sequelae even into the later years of their lives. Because diabetes mellitus is not a single disease but rather a complex constellation of syndromes, each patient has a unique response to the disease process.
English	Diabetes, Diabetes Mellitus, DIABETES MELLITUS, Unspecified diabetes mellitus, diabetes mellitus, diabetes mellitus (diagnosis), DM, Diabetes mellitus NOS, diabetes NOS, Diabetes Mellitus [Disease/Finding], diabete mellitus, diabetes, disorder diabetes mellitus, diabetes (DM), diabetes mellitus (DM), Diabetes mellitus (E08-E13), Diabetes mellitus, DM - Diabetes mellitus, Diabetes mellitus (disorder), Diabetes mellitus, NOS, Diabetes NOS

Your doctor will check your blood glucose levels, and if you are diagnosed with diabetes, your doctor will guide you on a plan to keep your blood sugar levels normal. If your diabetes is mild, your doctor will likely recommend a diet plan, exercise, and weight loss. Your doctor may prescribe medications that help reduce blood sugar levels. In some women, insulin may be necessary.

There is currently no cure for diabetes. The condition, however, can be managed so that patients can live a relatively normal life. Treatment of diabetes focuses on two goals: keeping blood glucose within normal range and preventing the development of long-term complications. Careful monitoring of diet, exercise, and blood glucose levels are as important as the use of insulin or oral medications in preventing complications of diabetes. In 2003, the American Diabetes Association updated its Standards of Care for the management of diabetes. These standards help manage health care providers in the most recent recommendations for diagnosis and treatment of the disease.
Doctors can monitor treatment using a blood test called hemoglobin A1C. When the blood glucose levels are high, changes occur in hemoglobin, the protein that carries oxygen in the blood. These changes are in direct proportion to the blood glucose levels over an extended period. The higher the hemoglobin A1C level, the higher the person's glucose levels have been. Thus, unlike the blood glucose measurement, which reveals the level at a particular moment, the hemoglobin A1Cmeasurement demonstrates whether the blood glucose levels have been controlled over the previous few months.

Can type 2 diabetes be cured? In the early stages of type 2 diabetes, it is possible to manage the diabetes to a level where symptoms go away and A1c reaches a normal level – this effectively “reverses” the progression of type 2 diabetes. According to research from Newcastle University, major weight loss can return insulin secretion to normal in people who had type 2 diabetes for four years or less. Indeed, it is commonly believed that significant weight loss and building muscle mass is the best way to reverse type 2 diabetes progression. However, it is important to note that reversing diabetes progression is not the same as curing type 2 diabetes – people still need to monitor their weight, diet, and exercise to ensure that type 2 diabetes does not progress. For many people who have had type 2 diabetes for a longer time, the damage to the beta cells progresses to the point at which it will never again be possible to make enough insulin to correctly control blood glucose, even with dramatic weight loss. But even in these people, weight loss is likely the best way to reduce the threat of complications.
An article published in November 2012 in the journal Global Public Health found that countries with more access to HFCS tended to have higher rates of the disease. Though it’s likely that these countries’ overall eating habits play a role in their populations’ diabetes risk, a study published in February 2013 in the journal PLoS One found limiting access to HFCS in particular may help reduce rates of the diagnosis.
Some patients with type 2 DM can control their disease with a calorically restricted diet (for instance 1600 to 1800 cal/day), regular aerobic exercise, and weight loss. Most patients, however, require the addition of some form of oral hypoglycemic drug or insulin. Oral agents to control DM include sulfonylurea drugs (such as glipizide), which increase pancreatic secretion of insulin; biguanides or thiazolidinediones (such as metformin or pioglitazone), which increase cellular sensitivity to insulin; or a-glucosidase inhibitors (such as acarbose), which decrease the absorption of carbohydrates from the gastrointestinal tract. Both types of diabetics also may be prescribed pramlintide (Symlin), a synthetic analog of human amylin, a hormone manufactured in the pancreatic beta cells. It enhances postprandial glucose control by slowing gastric emptying, decreasing postprandial glucagon concentrations, and regulating appetite and food intake; thus pramlintide is helpful for patients who do not achieve optimal glucose control with insulin and/or oral antidiabetic agents. When combinations of these agents fail to normalize blood glucose levels, insulin injections are added. Tight glucose control can reduce the patient’s risk of many of the complications of the disease. See: illustration
Another dipstick test can determine the presence of protein or albumin in the urine. Protein in the urine can indicate problems with kidney function and can be used to track the development of renal failure. A more sensitive test for urine protein uses radioactively tagged chemicals to detect microalbuminuria, small amounts of protein in the urine, that may not show up on dipstick tests.

One particular type of sugar that has attracted a lot of negative attention is high-fructose corn syrup (HFCS) — and for good reason, as multiple studies suggest HFCS can influence diabetes risk. Some research in people who are overweight and obese, for example, suggests regularly consuming drinks sweetened with either fructose, a byproduct of HFCS, or glucose can lead to weight gain, and drinks with fructose in particular may reduce insulin sensitivity and spike blood sugar levels.
Jump up ^ Qaseem, Amir; Wilt, Timothy J.; Kansagara, Devan; Horwitch, Carrie; Barry, Michael J.; Forciea, Mary Ann (6 March 2018). "Hemoglobin A Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults With Type 2 Diabetes Mellitus: A Guidance Statement Update From the American College of Physicians". Annals of Internal Medicine. doi:10.7326/M17-0939.
Diabetes can be looked for by testing a urine sample for sugar but for a diagnosis, a blood sample is required. This may be a simple measurement of the sugar level, usually fasting. Alternatively, a test called an HbA1c can be used which estimates sugar levels over the past couple of months. If someone has typical symptoms of diabetes, only a single abnormal test is required. Where there are no symptoms, a second confirmatory test is required. Sometimes, particularly in pregnancy, a glucose tolerance test is performed which involves blood tests before and 2 hours after a sugary drink.
The United Kingdom Prospective Diabetes Study (UKPDS) was a clinical study conducted by Z that was published in The Lancet in 1998. Around 3,800 people with type 2 diabetes were followed for an average of ten years, and were treated with tight glucose control or the standard of care, and again the treatment arm had far better outcomes. This confirmed the importance of tight glucose control, as well as blood pressure control, for people with this condition.[86][132][133]
Though not routinely used any longer, the oral glucose tolerance test (OGTT) is a gold standard for making the diagnosis of type 2 diabetes. It is still commonly used for diagnosing gestational diabetes and in conditions of pre-diabetes, such as polycystic ovary syndrome. With an oral glucose tolerance test, the person fasts overnight (at least eight but not more than 16 hours). Then first, the fasting plasma glucose is tested. After this test, the person receives an oral dose (75 grams) of glucose. There are several methods employed by obstetricians to do this test, but the one described here is standard. Usually, the glucose is in a sweet-tasting liquid that the person drinks. Blood samples are taken at specific intervals to measure the blood glucose.
Type 1 DM is caused by autoimmune destruction of the insulin-secreting beta cells of the pancreas. The loss of these cells results in nearly complete insulin deficiency; without exogenous insulin, type 1 DM is rapidly fatal. Type 2 DM results partly from a decreased sensitivity of muscle cells to insulin-mediated glucose uptake and partly from a relative decrease in pancreatic insulin secretion.
central diabetes insipidus a metabolic disorder due to injury of the neurohypophyseal system, which results in a deficient quantity of antidiuretic hormone (ADH or vasopressin) being released or produced, resulting in failure of tubular reabsorption of water in the kidney. As a consequence, there is the passage of a large amount of urine having a low specific gravity, and great thirst; it is often attended by voracious appetite, loss of strength, and emaciation. Diabetes insipidus may be acquired through infection, neoplasm, trauma, or radiation injuries to the posterior lobe of the pituitary gland or it may be inherited or idiopathic.
Rates of diabetes in 1985 were estimated at 30 million, increasing to 135 million in 1995 and 217 million in 2005.[18] This increase is believed to be primarily due to the global population aging, a decrease in exercise, and increasing rates of obesity.[18] The five countries with the greatest number of people with diabetes as of 2000 are India having 31.7 million, China 20.8 million, the United States 17.7 million, Indonesia 8.4 million, and Japan 6.8 million.[109] It is recognized as a global epidemic by the World Health Organization.[1]
Hyperglycemia (ie, random blood glucose concentration of more than 200 mg/dL or 11 mmol/L) results when insulin deficiency leads to uninhibited gluconeogenesis and prevents the use and storage of circulating glucose. The kidneys cannot reabsorb the excess glucose load, causing glycosuria, osmotic diuresis, thirst, and dehydration. Increased fat and protein breakdown leads to ketone production and weight loss. Without insulin, a child with type 1 diabetes mellitus wastes away and eventually dies due to DKA. The effects of insulin deficiency are shown in the image below.
 Type 1 diabetes mellitus is a chronic metabolic syndrome defined by an inability to produce insulin, a hormone which lowers blood sugar. This leads to inappropriate hyperglycaemia (increased blood sugar levels) and deranged metabolism of carbohydrates, fats and proteins. Insulin is normally produced in the pancreas, a glandular organ involved in the production of digestive enzymes and hormones such as insulin and glucagon. These functions are carried out in the exocrine and endocrine (Islets of Langerhans) pancreas respectively.
Insulin is a hormone produced by the beta cells within the pancreas in response to the intake of food. The role of insulin is to lower blood sugar (glucose) levels by allowing cells in the muscle, liver and fat to take up sugar from the bloodstream that has been absorbed from food, and store it away as energy. In type 1 diabetes (previously called insulin-dependent diabetes mellitus), the insulin-producing cells are destroyed and the body is not able to produce insulin naturally. This means that sugar is not stored away but is constantly released from energy stores giving rise to high sugar levels in the blood. This in turn causes dehydration and thirst (because the high glucose ‘spills over’ into the urine and pulls water out of the body at the same time). To exacerbate the problem, because the body is not making insulin it ‘thinks’ that it is starving so does everything it can to release even more stores of energy into the bloodstream. So, if left untreated, patients become increasingly unwell, lose weight, and develop a condition called diabetic ketoacidosis, which is due to the excessive release of acidic energy stores and causes severe changes to how energy is used and stored in the body.
The word mellitus (/məˈlaɪtəs/ or /ˈmɛlɪtəs/) comes from the classical Latin word mellītus, meaning "mellite"[114] (i.e. sweetened with honey;[114] honey-sweet[115]). The Latin word comes from mell-, which comes from mel, meaning "honey";[114][115] sweetness;[115] pleasant thing,[115] and the suffix -ītus,[114] whose meaning is the same as that of the English suffix "-ite".[116] It was Thomas Willis who in 1675 added "mellitus" to the word "diabetes" as a designation for the disease, when he noticed the urine of a diabetic had a sweet taste (glycosuria). This sweet taste had been noticed in urine by the ancient Greeks, Chinese, Egyptians, Indians, and Persians.
There is no single gene that “causes” type 1 diabetes. Instead, there are a large number of inherited factors that may increase an individual’s likelihood of developing diabetes. This is known as multifactorial inheritance. The genes implicated in the development of type 1 diabetes mellitus control the human leukocyte antigen (HLA) system. This system is involved in the complex process of identifying cells which are a normal part of the body, and distinguishing them from foreign cells, such as those of bacteria or viruses. In an autoimmune disease such as diabetes mellitus, this system makes a mistake in identifying the normal ‘self’ cells as ‘foreign’, and attacks the body.  
Type 2 DM is primarily due to lifestyle factors and genetics.[45] A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[16] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11]
Insulin is needed to allow glucose to pass from the blood into most of the body cells. Only the cells of the brain and central nervous system can use glucose from the blood in the absence of insulin. Without insulin, most body cells metabolize substances other than glucose for energy. However, fat metabolism in the absence of glucose metabolism, creates ketone bodies which are poisonous and their build up is associated with hyperglycemic coma. In the absence of sufficient insulin, unmetabolized glucose builds up in the blood. Water is drawn from body cells by osmosis to dilute the highly concentrated blood, and is then excreted along with much of the glucose, once the renal threshold for glucose (usually 10 mmol/L) is exceeded. Dehydration follows.

You can develop type 2 diabetes at any age, even during childhood. However, type 2 diabetes occurs most often in middle-aged and older people. You are more likely to develop type 2 diabetes if you are age 45 or older, have a family history of diabetes, or are overweight or obese. Diabetes is more common in people who are African American, Hispanic/Latino, American Indian, Asian American, or Pacific Islander.
Being too heavy gets the bulk of the blame for triggering type 2 diabetes. According to the National Institutes of Health, about 85 percent of people with type 2 diabetes are overweight or obese. But consider that the remaining 15 percent are not. Consider, too, that roughly two-thirds of overweight people and a third of those who are obese will never develop diabetes. In other words, normal-weight and thin people also develop type 2, while heavy people won't necessarily. Clearly, there is more to the connection between lifestyle and type 2 diabetes than just body size.
Knowledge is power. A certified diabetes educator can provide you with diabetes self-management education. They specialize in diabetes and can help you learn about complicated or easier things. For example, they can help you set up your glucose meter, teach you about how your medicines work, or help you put together a meal plan. You can meet with them one on one or in group setting.
Aspirin should be used as secondary prophylaxis in all diabetic people with evidence of macrovascular disease, and it should be strongly considered as primary prevention in diabetic subjects with other risk factors for macrovascular disease, such as hypertension, cigarette smoking, dyslipidemia, obesity, and albuminuria (macro or micro).228 Because of the platelet defects associated with diabetes, it is recommended that the dose of aspirin should be 300 mg per day,228–230 although the American Diabetes Association’s position statement (http://www.diabetes.org/DiabetesCare/supplement198/s45.htm) advocates a dose of 81 to 325 mg enteric-coated aspirin per day. If the patient cannot tolerate aspirin, then clopidogrel231 can be used.
Home blood glucose monitoring kits are available so patients with diabetes can monitor their own levels. A small needle or lancet is used to prick the finger and a drop of blood is collected and analyzed by a monitoring device. Some patients may test their blood glucose levels several times during a day and use this information to adjust their doses of insulin.

Also striking are the differences in incidence between mainland Italy (8.4 cases per 100,000 population) and the Island of Sardinia (36.9 cases per 100,000 population). These variations strongly support the importance of environmental factors in the development of type 1 diabetes mellitus. Most countries report that incidence rates have at least doubled in the last 20 years. Incidence appears to increase with distance from the equator. [31]

Pay attention if you find yourself feeling drowsy or lethargic; pain or numbness in your extremities; vision changes; fruity or sweet-smelling breath which is one of the symptoms of high ketones; and experiencing nausea or vomiting—as these are additional signs that something is not right. If there’s any question, see your doctor immediately to ensure that your blood sugar levels are safe and rule out diabetes.
×