Type 2 diabetes is a progressive, chronic disease related to your body's challenges with regulating blood sugar. It is often associated with generalized inflammation. Your pancreas produces the hormone insulin to convert sugar (glucose) to energy that you either use immediately or store. With type 2 diabetes, you are unable to use that insulin efficiently. Although your body produces the hormone, either there isn't enough of it to keep up with the amount of glucose in your system, or the insulin being produced isn't being used as well as it should be, both of which result in high blood sugar levels.
Hyperglycemia or high blood sugar is a serious health problem for diabetics. There are two types of hyperglycemia, 1) fasting, and 2)postprandial or after meal hyperglycemia. Hyperglycemia can also lead to ketoacidosis or hyperglycemic hyperosmolar nonketotic syndrome (HHNS). There are a variety of causes of hyperglycemia in people with diabetes. Symptoms of high blood sugar may include increased thirst, headaches, blurred vision, and frequent urination.Treatment can be achieved through lifestyle changes or medications changes. Carefully monitoring blood glucose levels is key to prevention.
"Secondary" diabetes refers to elevated blood sugar levels from another medical condition. Secondary diabetes may develop when the pancreatic tissue responsible for the production of insulin is destroyed by disease, such as chronic pancreatitis (inflammation of the pancreas by toxins like excessive alcohol), trauma, or surgical removal of the pancreas.
Jump up ^ Zheng, Sean L.; Roddick, Alistair J.; Aghar-Jaffar, Rochan; Shun-Shin, Matthew J.; Francis, Darrel; Oliver, Nick; Meeran, Karim (17 April 2018). "Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes". JAMA. 319 (15): 1580. doi:10.1001/jama.2018.3024.

Manage mild hypoglycemia by giving rapidly absorbed oral carbohydrate or glucose; for a comatose patient, administer an intramuscular injection of the hormone glucagon, which stimulates the release of liver glycogen and releases glucose into the circulation. Where appropriate, an alternative therapy is intravenous glucose (preferably no more than a 10% glucose solution). All treatments for hypoglycemia provide recovery in approximately 10 minutes. (See Treatment.)
It is important to record blood glucose readings taken at different times of the day – after fasting (before breakfast) as well as 2 hours after a meal. This allows your doctor to see a snapshot of how your blood glucose levels vary during the day and to recommend treatments accordingly. Most blood glucose meters now have "memory" that stores a number of blood glucose tests along with the time and date they were taken. Some even allow for graphs and charts of the results to be created and sent to your phone.
The tuberculosis skin test is based on the fact that infection with M. tuberculosis produces a delayed-type hypersensitivity skin reaction to certain components of the bacterium. The standard recommended tuberculin test is administered by injecting 0.1mL of 5 TU (tuberculin units) PPD into the top layers of skin of the forearm. "Reading" the skin test means detecting a raised, thickened local area of skin reaction, referred to as induration. The area of induration (palpable, raised, hardened area) around the site of injection is the reaction to tuberculin.
Maturity onset diabetes of the young (MODY) is a rare autosomal dominant inherited form of diabetes, due to one of several single-gene mutations causing defects in insulin production.[52] It is significantly less common than the three main types. The name of this disease refers to early hypotheses as to its nature. Being due to a defective gene, this disease varies in age at presentation and in severity according to the specific gene defect; thus there are at least 13 subtypes of MODY. People with MODY often can control it without using insulin.
Insulin, a hormone released from the pancreas (an organ behind the stomach that also produces digestive enzymes), controls the amount of glucose in the blood. Glucose in the bloodstream stimulates the pancreas to produce insulin. Insulin helps glucose to move from the blood into the cells. Once inside the cells, glucose is converted to energy, which is used immediately, or the glucose is stored as fat or glycogen until it is needed.
Yes. In fact, being sick can actually make the body need more diabetes medicine. If you take insulin, you might have to adjust your dose when you're sick, but you still need to take insulin. People with type 2 diabetes may need to adjust their diabetes medicines when they are sick. Talk to your diabetes health care team to be sure you know what to do.
High blood sugar (hyperglycemia). Your blood sugar level can rise for many reasons, including eating too much, being sick or not taking enough glucose-lowering medication. Check your blood sugar level often, and watch for signs and symptoms of high blood sugar — frequent urination, increased thirst, dry mouth, blurred vision, fatigue and nausea. If you have hyperglycemia, you'll need to adjust your meal plan, medications or both.

Exposure to certain viral infections (mumps and Coxsackie viruses) or other environmental toxins may serve to trigger abnormal antibody responses that cause damage to the pancreas cells where insulin is made. Some of the antibodies seen in type 1 diabetes include anti-islet cell antibodies, anti-insulin antibodies and anti-glutamic decarboxylase antibodies. These antibodies can be detected in the majority of patients, and may help determine which individuals are at risk for developing type 1 diabetes.


The symptoms may relate to fluid loss and polyuria, but the course may also be insidious. Diabetic animals are more prone to infections. The long-term complications recognized in humans are much rarer in animals. The principles of treatment (weight loss, oral antidiabetics, subcutaneous insulin) and management of emergencies (e.g. ketoacidosis) are similar to those in humans.[123]
In an otherwise healthy individual, blood glucose levels usually do not rise above 180 mg/dL (9 mmol/L). In a child with diabetes, blood sugar levels rise if insulin is insufficient for a given glucose load. The renal threshold for glucose reabsorption is exceeded when blood glucose levels exceed 180 mg/dL (10 mmol/L), causing glycosuria with the typical symptoms of polyuria and polydipsia. (See Pathophysiology, Clinical, and Treatment.)
Oral medications are available to lower blood glucose in Type II diabetics. In 1990, 23.4 outpatient prescriptions for oral antidiabetic agents were dispensed. By 2001, the number had increased to 91.8 million prescriptions. Oral antidiabetic agents accounted for more than $5 billion dollars in worldwide retail sales per year in the early twenty-first century and were the fastest-growing segment of diabetes drugs. The drugs first prescribed for Type II diabetes are in a class of compounds called sulfonylureas and include tolbutamide, tolazamide, acetohexamide, and chlorpropamide. Newer drugs in the same class are now available and include glyburide, glimeperide, and glipizide. How these drugs work is not well understood, however, they seem to stimulate cells of the pancreas to produce more insulin. New medications that are available to treat diabetes include metformin, acarbose, and troglitizone. The choice of medication depends in part on the individual patient profile. All drugs have side effects that may make them inappropriate for particular patients. Some for example, may stimulate weight gain or cause stomach irritation, so they may not be the best treatment for someone who is already overweight or who has stomach ulcers. Others, like metformin, have been shown to have positive effects such as reduced cardiovascular mortality, but but increased risk in other situations. While these medications are an important aspect of treatment for Type II diabetes, they are not a substitute for a well planned diet and moderate exercise. Oral medications have not been shown effective for Type I diabetes, in which the patient produces little or no insulin.
Regular ophthalmological examinations are recommended for early detection of diabetic retinopathy. The patient is educated about diabetes, its possible complications and their management, and the importance of adherence to the prescribed therapy. The patient is taught the importance of maintaining normal blood pressure levels (120/80 mm Hg or lower). Control of even mild-to-moderate hypertension results in fewer diabetic complications, esp. nephropathy, cerebrovascular disease, and cardiovascular disease. Limiting alcohol intake to approximately one drink daily and avoiding tobacco are also important for self-management. Emotional support and a realistic assessment of the patient's condition are offered; this assessment should stress that, with proper treatment, the patient can have a near-normal lifestyle and life expectancy. Long-term goals for a patient with diabetes should include achieving and maintaining optimal metabolic outcomes to prevent complications; modifying diet and lifestyle to prevent and treat obesity, dyslipidemia, cardiovascular disease, hypertension, and nephropathy; improving physical activity; and allowing for the patient’s nutritional and psychosocial needs and preferences. Assistance is offered to help the patient develop positive coping strategies. It is estimated that 23 million Americans will be diabetic by the year 2030. The increasing prevalence of obesity coincides with the increasing incidence of diabetes; approx. 45% of those diagnosed receive optimal care according to established guidelines. According to the CDC, the NIH, and the ADA, about 40% of Americans between ages 40 and 74 have prediabetes, putting them at increased risk for type 2 diabetes and cardiovascular disease. Lifestyle changes with a focus on decreasing obesity can prevent or delay the onset of diabetes in 58% of this population. The patient and family should be referred to local and national support and information groups and may require psychological counseling.

How is it treated? There is no uniform therapy for type 2 diabetes treatment, which depends on the individual person and his or her stage of type 2 diabetes. To learn more about individualization of therapy, please read our patient guide. That said, the ADA and EASD have created treatment recommendation guidelines for type 2 diabetes progression. In all cases, healthy eating, exercise, and weight management are key to effective type 2 diabetes management. As type 2 diabetes progresses, patients may need to add one or more drugs to their treatment regimen.
What are the symptoms of diabetes in men? Diabetes is a common lifelong condition that affects the ability of the hormones to manage blood sugar levels. It affects men and women differently. Learn about the signs and symptoms of diabetes in men. This article includes information on how diabetes can affect sex and cause erectile dysfunction. Read now
×