Classic symptoms of DM are polyuria, polydipsia, and weight loss. In addition, patients with hyperglycemia often have blurred vision, increased food consumption (polyphagia), and generalized weakness. When a patient with type 1 DM loses metabolic control (such as during infections or periods of noncompliance with therapy), symptoms of diabetic ketoacidosis occur. These may include nausea, vomiting, dizziness on arising, intoxication, delirium, coma, or death. Chronic complications of hyperglycemia include retinopathy and blindness, peripheral and autonomic neuropathies, glomerulosclerosis of the kidneys (with proteinuria, nephrotic syndrome, or end-stage renal failure), coronary and peripheral vascular disease, and reduced resistance to infections. Patients with DM often also sustain infected ulcerations of the feet, which may result in osteomyelitis and the need for amputation.
Insulin is essential to process carbohydrates, fat, and protein. Insulin reduces blood glucose levels by allowing glucose to enter muscle cells and by stimulating the conversion of glucose to glycogen (glycogenesis) as a carbohydrate store. Insulin also inhibits the release of stored glucose from liver glycogen (glycogenolysis) and slows the breakdown of fat to triglycerides, free fatty acids, and ketones. It also stimulates fat storage. Additionally, insulin inhibits the breakdown of protein and fat for glucose production (gluconeogenesis) in the liver and kidneys.

All children with type 1 diabetes mellitus require insulin therapy. Most require 2 or more injections of insulin daily, with doses adjusted on the basis of self-monitoring of blood glucose levels. Insulin replacement is accomplished by giving a basal insulin and a preprandial (premeal) insulin. The basal insulin is either long-acting (glargine or detemir) or intermediate-acting (NPH). The preprandial insulin is either rapid-acting (lispro, aspart, or glulisine) or short-acting (regular).
Type 1 diabetes occurs because the insulin-producing cells of the pancreas (beta cells) are damaged. In type 1 diabetes, the pancreas makes little or no insulin, so sugar cannot get into the body's cells for use as energy. People with type 1 diabetes must use insulin injections to control their blood glucose. Type 1 is the most common form of diabetes in people who are under age 30, but it can occur at any age. Ten percent of people with diabetes are diagnosed with type 1.
Exercise is very important if you have this health condition. Exercise makes cells more insulin sensitive, pulling glucose out of the blood. This brings down blood sugar, and more importantly, gives you better energy because the glucose is being transferred to the cells. Any type of exercise will do this, but extra benefit is gained when the activity helps build muscle, such as weight training or using resistance bands. The benefits of exercise on blood sugar last about 48-72 hours, so it is important for you to be physically active almost every day.

Accelerated atherosclerosis is the main underlying factor contributing to the high risk of atherothrombotic events in DM patients. CAD, peripheral vascular disease, stroke, and increased intima-media thickness are the main macrovascular complications. Diabetics are 2–4 times more likely to develop stroke than people without DM.2 CVD, particularly CAD, is the leading cause of morbidity and mortality in patients with DM.4 Patients with T2DM have a 2- to 4-fold increase in the risk of CAD, and patients with DM but without previous myocardial infarction (MI) carry the same level of risk for subsequent acute coronary events as nondiabetic patients with previous MI.5 Furthermore, people with diabetes have a poorer long-term prognosis after MI, including an increased risk for congestive heart failure and death.

The levels of glucose in the blood vary normally throughout the day. They rise after a meal and return to pre-meal levels within about 2 hours after eating. Once the levels of glucose in the blood return to premeal levels, insulin production decreases. The variation in blood glucose levels is usually within a narrow range, about 70 to 110 milligrams per deciliter (mg/dL) of blood in healthy people. If people eat a large amount of carbohydrates, the levels may increase more. People older than 65 years tend to have slightly higher levels, especially after eating.
2. Home glucose monitoring using either a visually read test or a digital readout of the glucose concentration in a drop of blood. Patients can usually learn to use the necessary equipment and perform finger sticks. They keep a daily record of findings and are taught to adjust insulin dosage accordingly. More recent glucose monitoring devices can draw blood from other locations on the body, such as the forearm.
Diabetes is a chronic condition, and it can last an entire lifetime. The goal of treating diabetes is to keep blood glucose levels as close to a normal range as possible. This prevents the symptoms of diabetes and the long-term complications of the condition. If you've been diagnosed with diabetes, your doctor – working with the members of your diabetes care team – will help you find your target blood glucose levels.
Studies show that good control of blood sugar levels decreases the risk of complications from diabetes.  Patients with better control of blood sugar have reduced rates of diabetic eye disease, kidney disease, and nerve disease. It is important for patients to measure their measuring blood glucose levels. Hemoglobin A1c can also be measured with a blood test and gives information about average blood glucose over the past 3 months. 

Education: People with diabetes should learn as much as possible about this condition and how to manage it. The more you know about your condition, the better prepared you are to manage it on a daily basis. Many hospitals offer diabetes education programs and many nurses and pharmacists have been certified to provide diabetes education. Contact a local hospital, doctor, or pharmacist to find out about programs and diabetes educators in your area.


The American Diabetes Association recommends that blood sugars be 80mg/dL-130mg/dL before meals and less than or equal to 180mg/dL two hours after meals. Blood sugar targets are individualized based on a variety of factors such as age, length of diagnosis, if you have other health issues, etc. For example, if you are an elderly person, your targets maybe a bit higher than someone else. Ask your physician what targets are right for you.
Insulin is needed to allow glucose to pass from the blood into most of the body cells. Only the cells of the brain and central nervous system can use glucose from the blood in the absence of insulin. Without insulin, most body cells metabolize substances other than glucose for energy. However, fat metabolism in the absence of glucose metabolism, creates ketone bodies which are poisonous and their build up is associated with hyperglycemic coma. In the absence of sufficient insulin, unmetabolized glucose builds up in the blood. Water is drawn from body cells by osmosis to dilute the highly concentrated blood, and is then excreted along with much of the glucose, once the renal threshold for glucose (usually 10 mmol/L) is exceeded. Dehydration follows.
Jump up ^ McBrien, K; Rabi, DM; Campbell, N; Barnieh, L; Clement, F; Hemmelgarn, BR; Tonelli, M; Leiter, LA; Klarenbach, SW; Manns, BJ (6 August 2012). "Intensive and Standard Blood Pressure Targets in Patients With Type 2 Diabetes Mellitus: Systematic Review and Meta-analysis". Archives of Internal Medicine. 172 (17): 1–8. doi:10.1001/archinternmed.2012.3147. PMID 22868819.
If you have type 2 diabetes and your body mass index (BMI) is greater than 35, you may be a candidate for weight-loss surgery (bariatric surgery). Blood sugar levels return to normal in 55 to 95 percent of people with diabetes, depending on the procedure performed. Surgeries that bypass a portion of the small intestine have more of an effect on blood sugar levels than do other weight-loss surgeries.
On behalf of the millions of Americans who live with or are at risk for diabetes, we are committed to helping you understand this chronic disease. Help us set the record straight and educate the world about diabetes and its risk factors by sharing the common questions and answers below. If you're new to type 2 diabetes, join our Living With Type 2 Diabetes program to get more facts.
Diabetes experts feel that these blood glucose monitoring devices give patients a significant amount of independence to manage their disease process; and they are a great tool for education as well. It is also important to remember that these devices can be used intermittently with fingerstick measurements. For example, a well-controlled patient with diabetes can rely on fingerstick glucose checks a few times a day and do well. If they become ill, if they decide to embark on a new exercise regimen, if they change their diet and so on, they can use the sensor to supplement their fingerstick regimen, providing more information on how they are responding to new lifestyle changes or stressors. This kind of system takes us one step closer to closing the loop, and to the development of an artificial pancreas that senses insulin requirements based on glucose levels and the body's needs and releases insulin accordingly - the ultimate goal.
a complex disorder of carbohydrate, fat, and protein metabolism that is primarily a result of a deficiency or complete lack of insulin secretion by the beta cells of the pancreas or resistance to insulin. The disease is often familial but may be acquired, as in Cushing's syndrome, as a result of the administration of excessive glucocorticoid. The various forms of diabetes have been organized into categories developed by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus of the American Diabetes Association. Type 1 diabetes mellitus in this classification scheme includes patients with diabetes caused by an autoimmune process, dependent on insulin to prevent ketosis. This group was previously called type I, insulin-dependent diabetes mellitus, juvenile-onset diabetes, brittle diabetes, or ketosis-prone diabetes. Patients with type 2 diabetes mellitus are those previously designated as having type II, non-insulin-dependent diabetes mellitus, maturity-onset diabetes, adult-onset diabetes, ketosis-resistant diabetes, or stable diabetes. Those with gestational diabetes mellitus are women in whom glucose intolerance develops during pregnancy. Other types of diabetes are associated with a pancreatic disease, hormonal changes, adverse effects of drugs, or genetic or other anomalies. A fourth subclass, the impaired glucose tolerance group, also called prediabetes, includes persons whose blood glucose levels are abnormal although not sufficiently above the normal range to be diagnosed as having diabetes. Approximately 95% of the 18 million diabetes patients in the United States are classified as type 2, and more than 70% of those patients are obese. About 1.3 million new cases of diabetes mellitus are diagnosed in the United States each year. Contributing factors to the development of diabetes are heredity; obesity; sedentary life-style; high-fat, low-fiber diets; hypertension; and aging. See also impaired glucose tolerance, potential abnormality of glucose tolerance, previous abnormality of glucose tolerance.
The classic oral glucose tolerance test measures blood glucose levels five times over a period of three hours. Some physicians simply get a baseline blood sample followed by a sample two hours after drinking the glucose solution. In a person without diabetes, the glucose levels rise and then fall quickly. In someone with diabetes, glucose levels rise higher than normal and fail to come back down as fast.
According to the Mayo Clinic, your risk of developing type 2 diabetes increases as you age. Your risk goes up after age 45 in particular. However, the incidence of type 2 diabetes is increasing dramatically among children, adolescents, and younger adults. Likely factors include reduced exercise, decreased muscle mass, and weight gain as you age. Type 1 diabetes is usually diagnosed by the age of 30.
Although there are dozens of known type 1 genes, about half of the risk attributable to heredity comes from a handful that coordinate a part of the immune system called HLA, which helps the body recognize nefarious foreign invaders, such as viruses, bacteria, and parasites. Type 1 diabetes is an autoimmune disease, in which the body's own immune system destroys the cells in the pancreas that produce insulin, so perhaps it is no surprise that immunity genes are involved. Other autoimmune diseases share the HLA gene link, which may be why people with type 1 are more likely to develop additional auto­immune disorders.
A chronic metabolic disorder in which the use of carbohydrate is impaired and that of lipid and protein is enhanced. It is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma. Long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection.

Feeling famished all the time? Your body could be trying to tell you that something’s up with your blood sugar. Many people with diabetes experience extreme hunger when their condition is unmanaged, thanks to high blood sugar levels. When your body can’t effectively convert the sugar in your blood into usable energy, this may leave you pining for every sandwich or sweet you see. And if you’re looking for a filling snack that won’t put your health at risk, enjoy one of the 25 Best and Worst Low-Sugar Protein Bars!


The problem with sugar, regardless of type, is the sheer amount of it that’s found in the Standard American Diet (SAD), which is the typical eating plan many people in the United States — as well as those in an increasing number of modernized countries — have developed a taste for. When consumed in excess, foods in this category can lead to heart disease, stroke, and other serious health issues. “Often, foods with added sugar also contain fat,” explains Grieger, noting that these components go hand in hand when it comes to the risk for insulin resistance, the hallmark of type 2 diabetes.
The good news is that behavior still seems to help shape whether someone with the genetic disposition actually develops type 2—and that changes in diet and exercise can sometimes be enough to ward off the disease. "People sometimes have the misconception that if we say something is genetic, then they can't do anything about preventing diabetes and its complications," says Hanis. But he notes that in a landmark study, lifestyle interventions prevented or delayed type 2 in nearly 60 percent of people at high risk. "If we focus on changing the environment, we can prevent diabetes," he says. "As we understand the genetics, we can prevent more of it."
As of 2016, 422 million people have diabetes worldwide,[101] up from an estimated 382 million people in 2013[17] and from 108 million in 1980.[101] Accounting for the shifting age structure of the global population, the prevalence of diabetes is 8.5% among adults, nearly double the rate of 4.7% in 1980.[101] Type 2 makes up about 90% of the cases.[16][18] Some data indicate rates are roughly equal in women and men,[18] but male excess in diabetes has been found in many populations with higher type 2 incidence, possibly due to sex-related differences in insulin sensitivity, consequences of obesity and regional body fat deposition, and other contributing factors such as high blood pressure, tobacco smoking, and alcohol intake.[102][103]
Metformin is generally recommended as a first line treatment for type 2 diabetes, as there is good evidence that it decreases mortality.[6] It works by decreasing the liver's production of glucose.[87] Several other groups of drugs, mostly given by mouth, may also decrease blood sugar in type II DM. These include agents that increase insulin release, agents that decrease absorption of sugar from the intestines, and agents that make the body more sensitive to insulin.[87] When insulin is used in type 2 diabetes, a long-acting formulation is usually added initially, while continuing oral medications.[6] Doses of insulin are then increased to effect.[6][88]
Ketoacidosis, a condition due to starvation or uncontrolled diabetes, is common in Type I diabetes. Ketones are acid compounds that form in the blood when the body breaks down fats and proteins. Symptoms include abdominal pain, vomiting, rapid breathing, extreme lethargy, and drowsiness. Patients with ketoacidosis will also have a sweet breath odor. Left untreated, this condition can lead to coma and death.
The body obtains glucose from three main sources: the intestinal absorption of food; the breakdown of glycogen (glycogenolysis), the storage form of glucose found in the liver; and gluconeogenesis, the generation of glucose from non-carbohydrate substrates in the body.[60] Insulin plays a critical role in balancing glucose levels in the body. Insulin can inhibit the breakdown of glycogen or the process of gluconeogenesis, it can stimulate the transport of glucose into fat and muscle cells, and it can stimulate the storage of glucose in the form of glycogen.[60]
Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar. It is among the most common of chronic disorders, affecting up to 5–10% of the adult population of the Western world. The prevalence of diabetes is increasing dramatically; it has been estimated that the worldwide prevalence will increase by more than 50% between the years 2000 and 2030 (Wild et al., 2004). It is clearly established that diabetes mellitus is not a single disease, but a genetically heterogeneous group of disorders that share glucose intolerance in common. The concept of genetic heterogeneity (i.e. that different genetic and/or environmental etiologic factors can result in similar phenotypes) has significantly altered the genetic analysis of this common disorder.
Poorly controlled diabetic patients are at risk for numerous oral complications such as periodontal disease, salivary gland dysfunction, infection, neuropathy, and poor healing. None of these complications are unique to diabetes. However, their presence may serve as an early clue to the possible presence of diabetes, prompting your dentist to perform or request further testing.

Diabetes mellitus (diabetes) is a common chronic disease of abnormal carbohydrate, fat, and protein metabolism that affects an estimated 20 million people in the United States, of whom about one third are undiagnosed. There are two major forms recognized, type-1 and type-2. Both are characterized by inappropriately high blood sugar levels (hyperglycemia). In type-1 diabetes the patient can not produce the hormone insulin, while in type-2 diabetes the patient produces insulin, but it is not used properly. An estimated 90% of diabetic patients suffer from type-2 disease. The causes of diabetes are multiple and both genetic and environmental factors contribute to its development. The genetic predisposition for type-2 diabetes is very strong and numerous environmental factors such as diet, lack of exercise, and being overweight are known to also increase one’s risk for diabetes. Diabetes is a dangerous disease which affects the entire body and diabetic patients are at increased risk for heart disease, hypertension, stroke, kidney failure, blindness, neuropathy, and infection when compared to nondiabetic patients. Diabetic patients also have impaired healing when compared to healthy individuals. This is in part due to the dysfunction of certain white blood cells that fight infection.
Type 2 diabetes is the most common type of diabetes. It is a chronic problem in which blood glucose (sugar) can no longer be regulated. There are two reasons for this. First, the cells of the body become resistant to insulin (insulin resistant). Insulin works like a key to let glucose (blood sugar) move out of the blood and into the cells where it is used as fuel for energy. When the cells become insulin resistant, it requires more and more insulin to move sugar into the cells, and too much sugar stays in the blood. Over time, if the cells require more and more insulin, the pancreas can't make enough insulin to keep up and begins to fail.
Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar. There is variability in its manifestations, wherein some individuals have only asymptomatic glucose intolerance, while others present acutely with diabetic ketoacidosis, and still others develop chronic complications such as nephropathy, neuropathy, retinopathy, or accelerated atherosclerosis. It is among the most common of chronic disorders, affecting up to 5–10% of the adult population of the Western world. Its prevalence varies over the globe, with certain populations, including some American Indian tribes and the inhabitants of Micronesia and Polynesia, having extremely high rates of diabetes (1,2). The prevalence of diabetes is increasing dramatically and it has been estimated that the worldwide prevalence will increase by more than 50% between the years 2000 and 2030 (3).
Patients with type 1 DM, unless they have had a pancreatic transplant, require insulin to live; intensive therapy with insulin to limit hyperglycemia (“tight control”) is more effective than conventional therapy in preventing the progression of serious microvascular complications such as kidney and retinal diseases. Intensive therapy consists of three or more doses of insulin injected or administered by infusion pump daily, with frequent self-monitoring of blood glucose levels as well as frequent changes in therapy as a result of contacts with health care professionals. Some negative aspects of intensive therapy include a three times more frequent occurrence of severe hypoglycemia, weight gain, and an adverse effect on serum lipid levels, i.e., a rise in total cholesterol, LDL cholesterol, and triglycerides and a fall in HDL cholesterol. Participation in an intensive therapy program requires a motivated patient, but it can dramatically reduce eye, nerve, and renal complications compared to conventional therapy. See: insulin pump for illus.
Examples of simple or refined carbohydrates, on the other hand, exist in various forms — from the sucrose in the table sugar you use to bake cookies, to the various kinds of added sugar in packaged snacks, fruit drinks, soda, and cereal. Simple carbohydrates are natural components of many fresh foods, too, such as the lactose in milk and the fructose in fruits, and therefore, a healthy, well-balanced diet will always contain these types of sugars.
Patients with type 1 DM, unless they have had a pancreatic transplant, require insulin to live; intensive therapy with insulin to limit hyperglycemia (“tight control”) is more effective than conventional therapy in preventing the progression of serious microvascular complications such as kidney and retinal diseases. Intensive therapy consists of three or more doses of insulin injected or administered by infusion pump daily, with frequent self-monitoring of blood glucose levels as well as frequent changes in therapy as a result of contacts with health care professionals. Some negative aspects of intensive therapy include a three times more frequent occurrence of severe hypoglycemia, weight gain, and an adverse effect on serum lipid levels, i.e., a rise in total cholesterol, LDL cholesterol, and triglycerides and a fall in HDL cholesterol. Participation in an intensive therapy program requires a motivated patient, but it can dramatically reduce eye, nerve, and renal complications compared to conventional therapy. See: insulin pump for illus.
Fasting glucose test This test involves giving a blood sample after you have fasted for eight hours. (18) If you have a fasting blood sugar level of less than 100 milligrams per deciliter (mg/dl), your blood sugar levels are normal. But if you have one from 100 to 125 mg/dl, you have prediabetes, and if you have 126 mg/dl on two separate occasions, you have diabetes. (17)
Constant advances are being made in development of new oral medications for persons with diabetes. In 2003, a drug called Metaglip combining glipizide and metformin was approved in a dingle tablet. Along with diet and exercise, the drug was used as initial therapy for Type 2 diabetes. Another drug approved by the U.S. Food and Drug Administration (FDA) combines metformin and rosiglitazone (Avandia), a medication that increases muscle cells' sensitivity to insulin. It is marketed under the name Avandamet. So many new drugs are under development that it is best to stay in touch with a physician for the latest information; physicians can find the best drug, diet and exercise program to fit an individual patient's need.
Test Your Blood Sugar: Blood sugar testing is an important part of helping to manage your diabetes. Whether you choose to do selective blood sugar testing or test your blood sugar at the same times daily, blood sugar testing gives you another piece of information and can help you change your diet and adjust your fitness routine or medicines. Keeping your blood sugars at target will help to reduce diabetes complications.
Does having type 2 diabetes affect life expectancy? While continued improvements in therapies and care for type 2 diabetes may be helping patients live longer, the unfortunate reality is that type 2 diabetes has been shown to decrease life expectancy by up to ten years, according to Diabetes UK. There is still much to be done to ensure that all patients have access to appropriate healthcare and treatments to live a happier and healthier life with type 2 diabetes.
Glucose in your body can cause yeast infections. This is because glucose speeds the growth of fungus. There are over-the-counter and prescription medications to treat yeast infections. You can potentially avoid yeast infections by maintaining better control of your blood sugar. Take insulin as prescribed, exercise regularly, reduce your carb intake, choose low-glycemic foods, and monitor your blood sugar.
×