Patients with type 1 DM, unless they have had a pancreatic transplant, require insulin to live; intensive therapy with insulin to limit hyperglycemia (“tight control”) is more effective than conventional therapy in preventing the progression of serious microvascular complications such as kidney and retinal diseases. Intensive therapy consists of three or more doses of insulin injected or administered by infusion pump daily, with frequent self-monitoring of blood glucose levels as well as frequent changes in therapy as a result of contacts with health care professionals. Some negative aspects of intensive therapy include a three times more frequent occurrence of severe hypoglycemia, weight gain, and an adverse effect on serum lipid levels, i.e., a rise in total cholesterol, LDL cholesterol, and triglycerides and a fall in HDL cholesterol. Participation in an intensive therapy program requires a motivated patient, but it can dramatically reduce eye, nerve, and renal complications compared to conventional therapy. See: insulin pump for illus.
Diabetes mellitus (DM) is a strong predictor of cardiovascular morbidity and mortality and is associated with both micro- and macrovascular complications.1 Cardiovascular disease (CVD) causes up to 70% of all deaths in people with DM. The epidemic of DM will thus be followed by a burden of diabetes-related vascular diseases. The number of DM patients increases with aging of the population, in part because of the increasing prevalence of obesity and sedentary lifestyle. Although the mortality from coronary artery disease (CAD) in patients without DM has declined since the 1990s, the mortality in men with type 2 diabetes (T2DM) has not changed significantly.2 Moreover, DM is an independent risk factor for heart failure. Heart failure is closely related to diabetic cardiomyopathy: changes in the structure and function of the myocardium are not directly linked to CAD or hypertension. Diabetic cardiomyopathy is clinically characterized by an initial increase in left ventricular stiffness and subclinical diastolic dysfunction, gradually compromising left ventricular systolic function with loss of contractile function and progress into overt congestive heart failure. DM accounts for a significant percentage of patients with a diagnosis of heart failure in epidemiologic studies such as the Framingham Study and the UK Prospective Diabetes Study (UKPDS).2 A 1% increase in glycated hemoglobin (HbA1c) correlates to an increment of 8% in heart failure.3 The prevalence of heart failure in elderly diabetic patients is up to 30%.3

A growing number of people in the U.S. and throughout the world are overweight and more prone to develop Type 2 diabetes, particularly if they have the genetics for it. "Type 2 diabetes can be caused by genetic inheritance, but by far the obesity epidemic has created massive increases in the occurrence of Type 2 diabetes. This is due to the major insulin resistance that is created by obesity," Gage says.

Health.com is part of the Meredith Health Group. All rights reserved. The material in this site is intended to be of general informational use and is not intended to constitute medical advice, probable diagnosis, or recommended treatments. All products and services featured are selected by our editors. Health.com may receive compensation for some links to products and services on this website. Offers may be subject to change without notice. See the Terms of Service and Privacy Policy (Your California Rights)for more information. Ad Choices | EU Data Subject Requests
^ Jump up to: a b Funnell, Martha M.; Anderson, Robert M. (2008). "Influencing self-management: from compliance to collaboration". In Feinglos, Mark N.; Bethel, M. Angelyn. Type 2 diabetes mellitus: an evidence-based approach to practical management. Contemporary endocrinology. Totowa, NJ: Humana Press. p. 462. ISBN 978-1-58829-794-5. OCLC 261324723.

A chronic metabolic disorder in which the use of carbohydrate is impaired and that of lipid and protein is enhanced. It is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma. Long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection.

Type 2 diabetes is most common is those who are genetically predisposed and who are overweight, lead a sedentary lifestyle, have high blood pressure, and/or have insulin resistance due to excess weight. People of certain ethnicities are more likely to develop diabetes, too. These include: African Americans, Mexican Americans, American Indians, Native Hawaiians, Pacific Islanders, and Asian Americans. These populations are more likely to be overweight and have high blood pressure, which increases the risk of developing diabetes.

Diabetes mellitus (DM) is a strong predictor of cardiovascular morbidity and mortality and is associated with both micro- and macrovascular complications.1 Cardiovascular disease (CVD) causes up to 70% of all deaths in people with DM. The epidemic of DM will thus be followed by a burden of diabetes-related vascular diseases. The number of DM patients increases with aging of the population, in part because of the increasing prevalence of obesity and sedentary lifestyle. Although the mortality from coronary artery disease (CAD) in patients without DM has declined since the 1990s, the mortality in men with type 2 diabetes (T2DM) has not changed significantly.2 Moreover, DM is an independent risk factor for heart failure. Heart failure is closely related to diabetic cardiomyopathy: changes in the structure and function of the myocardium are not directly linked to CAD or hypertension. Diabetic cardiomyopathy is clinically characterized by an initial increase in left ventricular stiffness and subclinical diastolic dysfunction, gradually compromising left ventricular systolic function with loss of contractile function and progress into overt congestive heart failure. DM accounts for a significant percentage of patients with a diagnosis of heart failure in epidemiologic studies such as the Framingham Study and the UK Prospective Diabetes Study (UKPDS).2 A 1% increase in glycated hemoglobin (HbA1c) correlates to an increment of 8% in heart failure.3 The prevalence of heart failure in elderly diabetic patients is up to 30%.3
Type 1 diabetes is always treated with insulin, a life-saving treatment. Patients will need to take insulin several times a day for the rest of their lives. They will usually learn how to self-administer this. Insulin is usually given through injections under the skin, normally two to four times a day. An increasing number of patients with type 1 diabetes are being treated with ‘insulin pumps’, which provide a continuous supply of insulin. 
To treat diabetic retinopathy, a laser is used to destroy and prevent the recurrence of the development of these small aneurysms and brittle blood vessels. Approximately 50% of patients with diabetes will develop some degree of diabetic retinopathy after 10 years of diabetes, and 80% retinopathy after 15 years of the disease. Poor control of blood sugar and blood pressure further aggravates eye disease in diabetes.
Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[32][33] The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk.[26] Eating a lot of white rice appears to play a role in increasing risk.[34] A lack of exercise is believed to cause 7% of cases.[35] Persistent organic pollutants may play a role.[36]

Merck & Co., Inc., Kenilworth, NJ, USA is a global healthcare leader working to help the world be well. From developing new therapies that treat and prevent disease to helping people in need, we are committed to improving health and well-being around the world. The Merck Manual was first published in 1899 as a service to the community. The legacy of this great resource continues as the Merck Manual in the US and Canada and the MSD Manual outside of North America. Learn more about our commitment to Global Medical Knowledge.
Higher levels of sugar in the urine and the vagina can become a breeding ground for the bacteria and yeast that cause these infections. Recurrent infections are particularly worrisome. “Usually when you keep getting infections, doctors will check for diabetes if you don’t already have it,” says Cypress. “Even women who go to the emergency room for urinary tract infections are often checked.” Don’t miss these other silent diabetes complications you need to know about.
Exposure to certain viral infections (mumps and Coxsackie viruses) or other environmental toxins may serve to trigger abnormal antibody responses that cause damage to the pancreas cells where insulin is made. Some of the antibodies seen in type 1 diabetes include anti-islet cell antibodies, anti-insulin antibodies and anti-glutamic decarboxylase antibodies. These antibodies can be detected in the majority of patients, and may help determine which individuals are at risk for developing type 1 diabetes.
People with T2D produce insulin, but their bodies don’t use it correctly; this is referred to as being insulin resistant. People with type 2 diabetes may also be unable to produce enough insulin to handle the glucose in their body. In these instances, insulin is needed to allow the glucose to travel from the bloodstream into our cells, where it’s used to create energy.

Type 2 diabetes (T2D) is more common than type 1 diabetes with about 90 to 95 percent of people with diabetes having T2D. According to the Centers for Disease Control and Prevention’s report, 30.3 million Americans, or 9.4% of the US population have diabetes.1 More alarming, an estimated 84 million more American adults have prediabetes, which if not treated, will advance to diabetes within five years.1
Per the WHO, people with fasting glucose levels from 6.1 to 6.9 mmol/l (110 to 125 mg/dl) are considered to have impaired fasting glucose.[67] people with plasma glucose at or above 7.8 mmol/l (140 mg/dl), but not over 11.1 mmol/l (200 mg/dl), two hours after a 75 gram oral glucose load are considered to have impaired glucose tolerance. Of these two prediabetic states, the latter in particular is a major risk factor for progression to full-blown diabetes mellitus, as well as cardiovascular disease.[68] The American Diabetes Association (ADA) since 2003 uses a slightly different range for impaired fasting glucose of 5.6 to 6.9 mmol/l (100 to 125 mg/dl).[69]
Jump up ^ Kyu, Hmwe H.; Bachman, Victoria F.; Alexander, Lily T.; Mumford, John Everett; Afshin, Ashkan; Estep, Kara; Veerman, J. Lennert; Delwiche, Kristen; Iannarone, Marissa L.; Moyer, Madeline L.; Cercy, Kelly; Vos, Theo; Murray, Christopher J.L.; Forouzanfar, Mohammad H. (9 August 2016). "Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013". The BMJ. 354: i3857. doi:10.1136/bmj.i3857. PMC 4979358. PMID 27510511.
Every cell in the human body needs energy in order to function. The body's primary energy source is glucose, a simple sugar resulting from the digestion of foods containing carbohydrates (sugars and starches). Glucose from the digested food circulates in the blood as a ready energy source for any cells that need it. Insulin is a hormone or chemical produced by cells in the pancreas, an organ located behind the stomach. Insulin bonds to a receptor site on the outside of cell and acts like a key to open a doorway into the cell through which glucose can enter. Some of the glucose can be converted to concentrated energy sources like glycogen or fatty acids and saved for later use. When there is not enough insulin produced or when the doorway no longer recognizes the insulin key, glucose stays in the blood rather entering the cells.

The tuberculosis skin test is based on the fact that infection with M. tuberculosis produces a delayed-type hypersensitivity skin reaction to certain components of the bacterium. The standard recommended tuberculin test is administered by injecting 0.1mL of 5 TU (tuberculin units) PPD into the top layers of skin of the forearm. "Reading" the skin test means detecting a raised, thickened local area of skin reaction, referred to as induration. The area of induration (palpable, raised, hardened area) around the site of injection is the reaction to tuberculin.
Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) refer to levels of blood glucose concentration above the normal range, but below those which are diagnostic for diabetes. Subjects with IGT and/or IFG are at substantially higher risk of developing diabetes and cardiovascular disease than those with normal glucose tolerance. The benefits of clinical intervention in subjects with moderate glucose intolerance is a topic of much current interest.
Which came first: the diabetes or the PCOS? For many women, a diagnosis of polycystic ovary syndrome means a diabetes diagnosis isn’t far behind. PCOS and diabetes are both associated with insulin resistance, meaning there are similar hormonal issues at play in both diseases. Fortunately, managing your PCOS and losing weight may help reduce your risk of becoming diabetic over time.
Poor vision, limited manual dexterity due to arthritis, tremor, or stroke, or other physical limitations may make monitoring blood glucose levels more difficult for older people. However, special monitors are available. Some have large numerical displays that are easier to read. Some provide audible instructions and results. Some monitors read blood glucose levels through the skin and do not require a blood sample. People can consult a diabetes educator to determine which meter is most appropriate.
And go easy on yourself: Sometimes you can be doing everything perfectly and your blood sugars start to creep up. Because diabetes is a progressive disease, your body slowly stops making insulin over time. If you've had diabetes for a very long time, try not to be discouraged if your doctor has to increase your medication or discusses insulin with you. Continue to do what you can to improve your health.
As part of proper diabetes management, it is important to be aware of the symptoms of abnormal blood glucose levels and know how to properly monitor your blood glucose levels using a home glucose meter. You should remember to always keep glucose tablets or candies containing sugar with you at all times to manage low blood glucose levels (hypoglycemia). Symptoms of low blood glucose include:
Jump up ^ Ahlqvist, Emma; Storm, Petter; Käräjämäki, Annemari; Martinell, Mats; Dorkhan, Mozhgan; Carlsson, Annelie; Vikman, Petter; Prasad, Rashmi B; Aly, Dina Mansour (2018). "Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables". The Lancet Diabetes & Endocrinology. 0 (5): 361–369. doi:10.1016/S2213-8587(18)30051-2. ISSN 2213-8587. PMID 29503172.
Your risk for Type 2 diabetes increases as you get older. It also increases if you smoke. Although smoking doesn't cause diabetes per se, the negative effects on your health are enough to make it more likely that Type 2 diabetes will occur if you have the other risk factors. "We try to be aggressive with smoking cessation, in particular in patients with diabetes," says Dr. Asha M. Thomas, an endocrinologist with Sinai Hospital of Baltimore.

In the exchange system, foods are divided into six food groups (starch, meat, vegetable, fruit, milk, and fat) and the patient is taught to select items from each food group as ordered. Items in each group may be exchanged for each other in specified portions. The patient should avoid concentrated sweets and should increase fiber in the diet. Special dietetic foods are not necessary. Patient teaching should emphasize that a diabetic diet is a healthy diet that all members of the family can follow.


Recognizing the symptoms of Type 1 diabetes is critical. Although Type 1 develops gradually, as the body’s insulin production decreases, blood glucose levels can become dangerously high once insulin production is outpaced. Symptoms may develop rapidly and can be mistaken for other illnesses such as the flu and a delayed diagnosis can have serious consequences.
The classic oral glucose tolerance test measures blood glucose levels five times over a period of three hours. Some physicians simply get a baseline blood sample followed by a sample two hours after drinking the glucose solution. In a person without diabetes, the glucose levels rise and then fall quickly. In someone with diabetes, glucose levels rise higher than normal and fail to come back down as fast.
Exercise is very important if you have this health condition. Exercise makes cells more insulin sensitive, pulling glucose out of the blood. This brings down blood sugar, and more importantly, gives you better energy because the glucose is being transferred to the cells. Any type of exercise will do this, but extra benefit is gained when the activity helps build muscle, such as weight training or using resistance bands. The benefits of exercise on blood sugar last about 48-72 hours, so it is important for you to be physically active almost every day.
The ketogenic, or keto, diet calls for dramatically increasing your fat intake and consuming a moderate amount of protein and a very low amount of carbs, with the aim of kicking your body into a natural metabolic state called ketosis, in which it relies on burning fat rather than carbs for energy. Ketosis is different from diabetic ketoacidosis, a health emergency that occurs when insulin levels are low in conjunction with high levels of ketones. (37) Ketones are by-products of metabolism that are released in the blood when carb intake is low.
Different environmental effects on type 1 diabetes mellitus development complicate the influence of race, but racial differences are evident. Whites have the highest reported incidence, whereas Chinese individuals have the lowest. Type 1 diabetes mellitus is 1.5 times more likely to develop in American whites than in American blacks or Hispanics. Current evidence suggests that when immigrants from an area with low incidence move to an area with higher incidence, their rates of type 1 diabetes mellitus tend to increase toward the higher level.
Type 2 diabetes typically starts with insulin resistance. That is, the cells of the body resist insulin’s efforts to escort glucose into the cells. What causes insulin resistance? It appears to be caused by an accumulation of microscopic fat particles within muscle and liver cells.4 This fat comes mainly from the diet—chicken fat, beef fat, cheese fat, fish fat, and even vegetable fat. To try to overcome insulin resistance, the pancreas produces extra insulin. When the pancreas can no longer keep up, blood sugar rises. The combination of insulin resistance and pancreatic cell failure leads to type 2 diabetes.
Of course, you’re exhausted every now and then. But ongoing fatigue is an important symptom to pay attention to; it might mean the food you’re eating for energy isn’t being broken down and used by cells as it’s supposed to. “You’re not getting the fuel your body needs,” says Dobbins. “You’re going to be tired and feel sluggish.” But in many cases of type 2 diabetes, your sugar levels can be elevated for awhile, so these diabetes symptoms could come on slowly.
According to the Mayo Clinic, your risk of developing type 2 diabetes increases as you age. Your risk goes up after age 45 in particular. However, the incidence of type 2 diabetes is increasing dramatically among children, adolescents, and younger adults. Likely factors include reduced exercise, decreased muscle mass, and weight gain as you age. Type 1 diabetes is usually diagnosed by the age of 30.
The term "type 1 diabetes" has replaced several former terms, including childhood-onset diabetes, juvenile diabetes, and insulin-dependent diabetes mellitus (IDDM). Likewise, the term "type 2 diabetes" has replaced several former terms, including adult-onset diabetes, obesity-related diabetes, and noninsulin-dependent diabetes mellitus (NIDDM). Beyond these two types, there is no agreed-upon standard nomenclature.[citation needed]
Part of a treatment plan for diabetes will involve learning about diabetes, how to manage it, and how to prevent complications. Your doctor, diabetes educator, or other health care professional will help you learn what you need to know so you are able to manage your diabetes as effectively as possible. Keep in mind that learning about diabetes and its treatment will take time. Involving family members or other people who are significant in your life can also help you manage your diabetes.
Another dipstick test can determine the presence of protein or albumin in the urine. Protein in the urine can indicate problems with kidney function and can be used to track the development of renal failure. A more sensitive test for urine protein uses radioactively tagged chemicals to detect microalbuminuria, small amounts of protein in the urine, that may not show up on dipstick tests.

Beta cells are vulnerable to more than just bad genes, which may explain the associations between type 2 diabetes and environmental factors that aren't related to how much fat a body has or where it is stored. Beta cells carry vitamin D receptors on their surface, and people with vitamin D deficiency are at increased risk for type 2. Plus, several studies have shown that people with higher levels of toxic substances in their blood—such as from the PCBs found in fish fat—are at increased risk of type 2 diabetes, though a cause-and-effect relationship hasn't been proved. (Toxic substances and vitamin D have also been implicated in type 1 diabetes, but the disease mechanism may be unrelated to what's going on in type 2.)
Although there are dozens of known type 1 genes, about half of the risk attributable to heredity comes from a handful that coordinate a part of the immune system called HLA, which helps the body recognize nefarious foreign invaders, such as viruses, bacteria, and parasites. Type 1 diabetes is an autoimmune disease, in which the body's own immune system destroys the cells in the pancreas that produce insulin, so perhaps it is no surprise that immunity genes are involved. Other autoimmune diseases share the HLA gene link, which may be why people with type 1 are more likely to develop additional auto­immune disorders.
Diabetic peripheral neuropathy is a condition where nerve endings, particularly in the legs and feet, become less sensitive. Diabetic foot ulcers are a particular problem since the patient does not feel the pain of a blister, callous, or other minor injury. Poor blood circulation in the legs and feet contribute to delayed wound healing. The inability to sense pain along with the complications of delayed wound healing can result in minor injuries, blisters, or callouses becoming infected and difficult to treat. In cases of severe infection, the infected tissue begins to break down and rot away. The most serious consequence of this condition is the need for amputation of toes, feet, or legs due to severe infection.
Our bodies break down the foods we eat into glucose and other nutrients we need, which are then absorbed into the bloodstream from the gastrointestinal tract. The glucose level in the blood rises after a meal and triggers the pancreas to make the hormone insulin and release it into the bloodstream. But in people with diabetes, the body either can't make or can't respond to insulin properly.
The food that people eat provides the body with glucose, which is used by the cells as a source of energy. If insulin isn't available or doesn't work correctly to move glucose from the blood into cells, glucose will stay in the blood. High blood glucose levels are toxic, and cells that don't get glucose are lacking the fuel they need to function properly.
Metformin is generally recommended as a first line treatment for type 2 diabetes, as there is good evidence that it decreases mortality.[6] It works by decreasing the liver's production of glucose.[87] Several other groups of drugs, mostly given by mouth, may also decrease blood sugar in type II DM. These include agents that increase insulin release, agents that decrease absorption of sugar from the intestines, and agents that make the body more sensitive to insulin.[87] When insulin is used in type 2 diabetes, a long-acting formulation is usually added initially, while continuing oral medications.[6] Doses of insulin are then increased to effect.[6][88]
FIGURE 19-1 ■. This figure shows the hyperbolic relationship of insulin resistance and beta cell function. On the y-axis is beta cell function as reflected in the first-phase insulin response during intravenous (IV) glucose infusion; on the x-axis is insulin sensitivity and its mirror image resistance. In a subject with normal glucose tolerance (NGT) and beta-cell reserve, an increase in insulin resistance results in increased insulin release and normal glucose tolerance. In an individual for whom the capacity to increase insulin release is compromised, increasing insulin resistance with partial or no beta-cell compensation results in progression from normal glucose tolerance, to impaired glucose tolerance (IGT), and finally to diabetes (T2D). Differences between these categories are small at high insulin sensitivity, which may be maintained by weight reduction, exercise, and certain drugs. At a critical degree of insulin resistance, due to obesity or other listed factors, only a further small increment in resistance requires a large increase in insulin output. Those that can increase insulin secretion to this extent retain normal glucose tolerance; those who cannot achieve this degree of insulin secretion (e.g., due to a mild defect in genes regulating insulin synthesis, insulin secretion, insulin action, or an ongoing immune destruction of beta cells) now unmask varying degrees of carbohydrate intolerance. The product of insulin sensitivity (the reciprocal of insulin resistance) and acute insulin response (a measurement beta-cell function) has been called the “disposition index.” This index remains constant in an individual with normal beta cell compensation in response to changes in insulin resistance. IGT, impaired glucose tolerance; NGT, normal glucose tolerance; T2D, type 2 diabetes.
Individuals with diabetes have two times the likelihood of getting a urinary tract infection compared to individuals without the disease. If you find yourself getting up every couple of hours in the middle of the night, and you seem to be expelling a lot more urine than you used to, talk to your doctor and find out whether or not you have diabetes.
Diabetes mellitus type 2 is characterized by high blood glucose in the context of insulin resistance and relative insulin deficiency.[51] This is in contrast to diabetes mellitus type 1 in which there is an absolute insulin deficiency due to destruction of islet cells in the pancreas and gestational diabetes mellitus that is a new onset of high blood sugars associated with pregnancy.[13] Type 1 and type 2 diabetes can typically be distinguished based on the presenting circumstances.[48] If the diagnosis is in doubt antibody testing may be useful to confirm type 1 diabetes and C-peptide levels may be useful to confirm type 2 diabetes,[52] with C-peptide levels normal or high in type 2 diabetes, but low in type 1 diabetes.[53]
Type 2 DM is primarily due to lifestyle factors and genetics.[45] A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[16] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11]
People with type 1 diabetes sometimes receive transplantation of an entire pancreas or of only the insulin-producing cells from a donor pancreas. This procedure may allow people with type 1 diabetes mellitus to maintain normal glucose levels. However, because immunosuppressant drugs must be given to prevent the body from rejecting the transplanted cells, pancreas transplantation is usually done only in people who have serious complications due to diabetes or who are receiving another transplanted organ (such as a kidney) and will require immunosuppressant drugs anyway.
Apart from these medications, treating diabetes effectively means taking a well-rounded approach: You’ll need to eat well, exercise, and manage stress, because all these factors can affect your blood sugar levels. Staying healthy with diabetes also requires caring for yourself — like protecting your feet, practicing oral hygiene, and tending to your mental health.

Management. There is no cure for diabetes; the goal of treatment is to maintain blood glucose and lipid levels within normal limits and to prevent complications. In general, good control is achieved when the following occur: fasting plasma glucose is within a specific range (set by health care providers and the individual), glycosylated hemoglobin tests show that blood sugar levels have stayed within normal limits from one testing period to the next, the patient's weight is normal, blood lipids remain within normal limits, and the patient has a sense of health and well-being. 

Then, once you do have an injury, uncontrolled diabetes can make it harder for your body to heal. “High blood sugars provide a good environment for bacteria to grow,” she says. That's because diabetes is also often accompanied by high blood pressure and high cholesterol, and the resulting plaque buildup can narrow blood vessels, reducing blood supply and leading to slow healing.
×