Clinistix and Diastix are paper strips or dipsticks that change color when dipped in urine. The test strip is compared to a chart that shows the amount of glucose in the urine based on the change in color. The level of glucose in the urine lags behind the level of glucose in the blood. Testing the urine with a test stick, paper strip, or tablet that changes color when sugar is present is not as accurate as blood testing, however it can give a fast and simple reading.
Patients with type 2 diabetes can still make insulin, but not enough to control their glucose levels. Type 2 diabetes is therefore initially treated with a combination of lifestyle changes (diet and exercise) which reduce the need for insulin and therefore lower glucose levels. If this is insufficient to achieve good glucose control, a range of tablets are available. These include metformin and pioglitazone, which, like diet and exercise, reduce insulin requirements; sulphonylureas (e.g. gliclazide), which stimulate insulin secretion; DPP4 inhibitors (e.g sitagliptin) and GLP-1 agonists (e.g. liraglutide), which stimulate insulin production and reduce appetite; and SGLT2 inhibitors (e.g. dapagliflozin), which lower blood sugar levels by causing sugar to pass out of the body in the urine. In many patients, particularly after several years of treatment, insulin production is so low or so insufficient compared with the patient's needs that patients with type 2 diabetes have to be treated with insulin injections, either alone or in combination with tablets.
People usually develop type 2 diabetes after the age of 40 years, although people of South Asian origin are at an increased risk of the condition and may develop diabetes from the age of 25 onwards. The condition is also becoming increasingly common among children and adolescents across all populations. Type 2 diabetes often develops as a result of overweight, obesity and lack of physical activity and diabetes prevalence is on the rise worldwide as these problems become more widespread.
There are a number of rare cases of diabetes that arise due to an abnormality in a single gene (known as monogenic forms of diabetes or "other specific types of diabetes").[10][13] These include maturity onset diabetes of the young (MODY), Donohue syndrome, and Rabson–Mendenhall syndrome, among others.[10] Maturity onset diabetes of the young constitute 1–5% of all cases of diabetes in young people.[38]
Type II is considered a milder form of diabetes because of its slow onset (sometimes developing over the course of several years) and because it usually can be controlled with diet and oral medication. The consequences of uncontrolled and untreated Type II diabetes, however, are the just as serious as those for Type I. This form is also called noninsulin-dependent diabetes, a term that is somewhat misleading. Many people with Type II diabetes can control the condition with diet and oral medications, however, insulin injections are sometimes necessary if treatment with diet and oral medication is not working.
FIGURE 19-1 ■. This figure shows the hyperbolic relationship of insulin resistance and beta cell function. On the y-axis is beta cell function as reflected in the first-phase insulin response during intravenous (IV) glucose infusion; on the x-axis is insulin sensitivity and its mirror image resistance. In a subject with normal glucose tolerance (NGT) and beta-cell reserve, an increase in insulin resistance results in increased insulin release and normal glucose tolerance. In an individual for whom the capacity to increase insulin release is compromised, increasing insulin resistance with partial or no beta-cell compensation results in progression from normal glucose tolerance, to impaired glucose tolerance (IGT), and finally to diabetes (T2D). Differences between these categories are small at high insulin sensitivity, which may be maintained by weight reduction, exercise, and certain drugs. At a critical degree of insulin resistance, due to obesity or other listed factors, only a further small increment in resistance requires a large increase in insulin output. Those that can increase insulin secretion to this extent retain normal glucose tolerance; those who cannot achieve this degree of insulin secretion (e.g., due to a mild defect in genes regulating insulin synthesis, insulin secretion, insulin action, or an ongoing immune destruction of beta cells) now unmask varying degrees of carbohydrate intolerance. The product of insulin sensitivity (the reciprocal of insulin resistance) and acute insulin response (a measurement beta-cell function) has been called the “disposition index.” This index remains constant in an individual with normal beta cell compensation in response to changes in insulin resistance. IGT, impaired glucose tolerance; NGT, normal glucose tolerance; T2D, type 2 diabetes.

Several tests are helpful in identifying DM. These include tests of fasting plasma glucose levels, casual (randomly assessed) glucose levels, or glycosylated hemoglobin levels. Diabetes is currently established if patients have classic diabetic symptoms and if on two occasions fasting glucose levels exceed 126 mg/dL (> 7 mmol/L), random glucose levels exceed 200 mg/dL (11.1 mmol/L), or a 2-hr oral glucose tolerance test is 200 mg/dL or more. A hemoglobin A1c test that is more than two standard deviations above normal (6.5% or greater) is also diagnostic of the disease.


A fingerstick glucose test is most often used to monitor blood glucose. Most blood glucose monitoring devices (glucose meters) use a drop of blood obtained by pricking the tip of the finger with a small lancet. The lancet holds a tiny needle that can be jabbed into the finger or placed in a spring-loaded device that easily and quickly pierces the skin. Most people find that the pricking causes only minimal discomfort. Then, a drop of blood is placed on a reagent strip. The strip contains chemicals that undergo changes depending on the glucose level. The glucose meter reads the changes in the test strip and reports the result on a digital display. Some devices allow the blood sample to be obtained from other sites, such as the palm, forearm, upper arm, thigh, or calf. Home glucose meters are smaller than a deck of cards.

Diabetes mellitus results mainly from a deficiency or diminished effectiveness of insulin that is normally produced by the beta cells of the pancreas. It is characterised by high blood sugar, altered sugar and glucose metabolism and this affects blood vessels and causes several organ damage. Causes of diabetes can be classified according to the types of diabetes.
About 84 million adults in the US (more than 1 out of 3) have prediabetes, and about 90% do not know they have it until a routine blood test is ordered, or symptoms of type 2 diabetes develop. For example, excessive thirst, frequent urination, and unexplained weight loss. If you have prediabetes also it puts you at risk for heart attack, stroke, and type 2 diabetes.
The blood glucose levels may jump after people eat foods they did not realize were high in carbohydrates. Emotional stress, an infection, and many drugs tend to increase blood glucose levels. Blood glucose levels increase in many people in the early morning hours because of the normal release of hormones (growth hormone and cortisol), a reaction called the dawn phenomenon. Blood glucose may shoot too high if the body releases certain hormones in response to low blood glucose levels (Somogyi effect). Exercise may cause the levels of glucose in the blood to fall low.

Most people with diabetes should keep a record of their blood glucose levels and report them to their doctor or nurse for advice in adjusting the dose of insulin or the oral antihyperglycemic drug. Many people can learn to adjust the insulin dose on their own as necessary. Some people who have mild or early type 2 diabetes that is well-controlled with one or two drugs may be able to monitor their fingerstick glucose levels relatively infrequently.


People with full-blown type 2 diabetes are not able to use the hormone insulin properly, and have what’s called insulin resistance. Insulin is necessary for glucose, or sugar, to get from your blood into your cells to be used for energy. When there is not enough insulin — or when the hormone doesn’t function as it should — glucose accumulates in the blood instead of being used by the cells. This sugar accumulation may lead to the aforementioned complications.
×