Type 2 diabetes was also previously referred to as non-insulin dependent diabetes mellitus (NIDDM), or adult-onset diabetes mellitus (AODM). In type 2 diabetes, patients can still produce insulin, but do so relatively inadequately for their body's needs, particularly in the face of insulin resistance as discussed above. In many cases this actually means the pancreas produces larger than normal quantities of insulin. A major feature of type 2 diabetes is a lack of sensitivity to insulin by the cells of the body (particularly fat and muscle cells).

The body obtains glucose from three main sources: the intestinal absorption of food; the breakdown of glycogen (glycogenolysis), the storage form of glucose found in the liver; and gluconeogenesis, the generation of glucose from non-carbohydrate substrates in the body.[60] Insulin plays a critical role in balancing glucose levels in the body. Insulin can inhibit the breakdown of glycogen or the process of gluconeogenesis, it can stimulate the transport of glucose into fat and muscle cells, and it can stimulate the storage of glucose in the form of glycogen.[60]
At present, the American Diabetes Association does not recommend general screening of the population for type 1 diabetes, though screening of high risk individuals, such as those with a first degree relative (sibling or parent) with type 1 diabetes should be encouraged. Type 1 diabetes tends to occur in young, lean individuals, usually before 30 years of age; however, older patients do present with this form of diabetes on occasion. This subgroup is referred to as latent autoimmune diabetes in adults (LADA). LADA is a slow, progressive form of type 1 diabetes. Of all the people with diabetes, only approximately 10% have type 1 diabetes and the remaining 90% have type 2 diabetes.

In type 1 diabetes, other symptoms to watch for include unexplained weight loss, lethargy, drowsiness, and hunger. Symptoms sometimes occur after a viral illness. In some cases, a person may reach the point of diabetic ketoacidosis (DKA) before a type 1 diagnosis is made. DKA occurs when blood glucose is dangerously high and the body can't get nutrients into the cells because of the absence of insulin. The body then breaks down muscle and fat for energy, causing an accumulation of ketones in the blood and urine. Symptoms of DKA include a fruity odor on the breath; heavy, taxed breathing; and vomiting. If left untreated, DKA can result in stupor, unconsciousness, and even death.
With gestational diabetes, risks to the unborn baby are even greater than risks to the mother. Risks to the baby include abnormal weight gain before birth, breathing problems at birth, and higher obesity and diabetes risk later in life. Risks to the mother include needing a cesarean section due to an overly large baby, as well as damage to heart, kidney, nerves, and eye.
When the blood glucose level rises above 160 to 180 mg/dL, glucose spills into the urine. When the level of glucose in the urine rises even higher, the kidneys excrete additional water to dilute the large amount of glucose. Because the kidneys produce excessive urine, people with diabetes urinate large volumes frequently (polyuria). The excessive urination creates abnormal thirst (polydipsia). Because excessive calories are lost in the urine, people may lose weight. To compensate, people often feel excessively hungry.

Type 2 diabetes is believed to have a strong genetic link, meaning that it tends to run in families. Several genes are being studied that may be related to the cause of type 2 diabetes. If you have any of the following type 2 diabetes risk factors, it’s important to ask your doctor about a diabetes test. With a proper diabetes diet and healthy lifestyle habits, along with diabetes medication, if necessary, you can manage type 2 diabetes just like you manage other areas of your life. Be sure to continue seeking the latest information on type 2 diabetes as you become your own health advocate.
All types of diabetes mellitus have something in common. Normally, your body breaks down the sugars and carbohydrates you eat into a special sugar called glucose. Glucose fuels the cells in your body. But the cells need insulin, a hormone, in your bloodstream in order to take in the glucose and use it for energy. With diabetes mellitus, either your body doesn't make enough insulin, it can't use the insulin it does produce, or a combination of both.
According to the National Institutes of Health, the reported rate of gestational diabetes is between 2% to 10% of pregnancies. Gestational diabetes usually resolves itself after pregnancy. Having gestational diabetes does, however, put mothers at risk for developing type 2 diabetes later in life. Up to 10% of women with gestational diabetes develop type 2 diabetes. It can occur anywhere from a few weeks after delivery to months or years later.
Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar. There is variability in its manifestations, wherein some individuals have only asymptomatic glucose intolerance, while others present acutely with diabetic ketoacidosis, and still others develop chronic complications such as nephropathy, neuropathy, retinopathy, or accelerated atherosclerosis. It is among the most common of chronic disorders, affecting up to 5–10% of the adult population of the Western world. Its prevalence varies over the globe, with certain populations, including some American Indian tribes and the inhabitants of Micronesia and Polynesia, having extremely high rates of diabetes (1,2). The prevalence of diabetes is increasing dramatically and it has been estimated that the worldwide prevalence will increase by more than 50% between the years 2000 and 2030 (3).
The development of type 2 diabetes is caused by a combination of lifestyle and genetic factors.[24][26] While some of these factors are under personal control, such as diet and obesity, other factors are not, such as increasing age, female gender, and genetics.[10] A lack of sleep has been linked to type 2 diabetes.[27] This is believed to act through its effect on metabolism.[27] The nutritional status of a mother during fetal development may also play a role, with one proposed mechanism being that of DNA methylation.[28] The intestinal bacteria Prevotella copri and Bacteroides vulgatus have been connected with type 2 diabetes.[29]
Metformin is generally recommended as a first line treatment for type 2 diabetes, as there is good evidence that it decreases mortality.[6] It works by decreasing the liver's production of glucose.[87] Several other groups of drugs, mostly given by mouth, may also decrease blood sugar in type II DM. These include agents that increase insulin release, agents that decrease absorption of sugar from the intestines, and agents that make the body more sensitive to insulin.[87] When insulin is used in type 2 diabetes, a long-acting formulation is usually added initially, while continuing oral medications.[6] Doses of insulin are then increased to effect.[6][88]
In the exchange system, foods are divided into six food groups (starch, meat, vegetable, fruit, milk, and fat) and the patient is taught to select items from each food group as ordered. Items in each group may be exchanged for each other in specified portions. The patient should avoid concentrated sweets and should increase fiber in the diet. Special dietetic foods are not necessary. Patient teaching should emphasize that a diabetic diet is a healthy diet that all members of the family can follow.
Aspirin should be used as secondary prophylaxis in all diabetic people with evidence of macrovascular disease, and it should be strongly considered as primary prevention in diabetic subjects with other risk factors for macrovascular disease, such as hypertension, cigarette smoking, dyslipidemia, obesity, and albuminuria (macro or micro).228 Because of the platelet defects associated with diabetes, it is recommended that the dose of aspirin should be 300 mg per day,228–230 although the American Diabetes Association’s position statement (http://www.diabetes.org/DiabetesCare/supplement198/s45.htm) advocates a dose of 81 to 325 mg enteric-coated aspirin per day. If the patient cannot tolerate aspirin, then clopidogrel231 can be used.
Before you find yourself shocked by a diabetes diagnosis, make sure you know these 20 diabetes signs you shouldn’t ignore. If you identify with any of these warning signs on the list, be sure to visit your doctor ASAP to get your blood sugar tested. And if you want to reduce your risk of becoming diabetic in the first place, start with the 40 Tips That Double Weight Loss!

Although urine can also be tested for the presence of glucose, checking urine is not a good way to monitor treatment or adjust therapy. Urine testing can be misleading because the amount of glucose in the urine may not reflect the current level of glucose in the blood. Blood glucose levels can get very low or reasonably high without any change in the glucose levels in the urine.

The term "diabetes" or "to pass through" was first used in 230 BCE by the Greek Apollonius of Memphis.[108] The disease was considered rare during the time of the Roman empire, with Galen commenting he had only seen two cases during his career.[108] This is possibly due to the diet and lifestyle of the ancients, or because the clinical symptoms were observed during the advanced stage of the disease. Galen named the disease "diarrhea of the urine" (diarrhea urinosa).[110]
Managing your blood glucose, blood pressure, and cholesterol, and quitting smoking if you smoke, are important ways to manage your type 2 diabetes. Lifestyle changes that include planning healthy meals, limiting calories if you are overweight, and being physically active are also part of managing your diabetes. So is taking any prescribed medicines. Work with your health care team to create a diabetes care plan that works for you.

^ Jump up to: a b Funnell, Martha M.; Anderson, Robert M. (2008). "Influencing self-management: from compliance to collaboration". In Feinglos, Mark N.; Bethel, M. Angelyn. Type 2 diabetes mellitus: an evidence-based approach to practical management. Contemporary endocrinology. Totowa, NJ: Humana Press. p. 462. ISBN 978-1-58829-794-5. OCLC 261324723.

Type 2 DM begins with insulin resistance, a condition in which cells fail to respond to insulin properly.[2] As the disease progresses, a lack of insulin may also develop.[12] This form was previously referred to as "non insulin-dependent diabetes mellitus" (NIDDM) or "adult-onset diabetes".[2] The most common cause is excessive body weight and insufficient exercise.[2]
It's not as clear what the rest of the type 1 genes are up to, but researchers are eager to find out. "Even though something accounts for a small part [of the genetic risk], it could have a significant impact," says Stephen Rich, PhD, director of the Center for Public Health Genomics at the University of Virginia School of Medicine. Understanding these genes' role may clue researchers in to less obvious biological pathways involved in type 1 diabetes, and to possible prevention strategies.

What is hypoglycemia? A blood sugar level of under 70 mg/dl (3.9 mmol/l) is typically considered hypoglycemia (low blood sugar), and can result in irritability, confusion, seizures, and even unconsciousness for extreme lows. To correct hypoglycemia, patients commonly use fast-acting carbohydrates. In extreme cases of severe hypoglycemia, a glucagon injection pen can be used. According to the Mayo Clinic, symptoms of hypoglycemia are:
Childhood obesity rates are rising, and so are the rates of type 2 diabetes in youth. More than 75% of children with type 2 diabetes have a close relative who has it, too. But it’s not always because family members are related; it can also be because they share certain habits that can increase their risk. Parents can help prevent or delay type 2 diabetes by developing a plan for the whole family:
Monogenic diabetes is caused by mutations, or changes, in a single gene. These changes are usually passed through families, but sometimes the gene mutation happens on its own. Most of these gene mutations cause diabetes by making the pancreas less able to make insulin. The most common types of monogenic diabetes are neonatal diabetes and maturity-onset diabetes of the young (MODY). Neonatal diabetes occurs in the first 6 months of life. Doctors usually diagnose MODY during adolescence or early adulthood, but sometimes the disease is not diagnosed until later in life.
A fingerstick glucose test is most often used to monitor blood glucose. Most blood glucose monitoring devices (glucose meters) use a drop of blood obtained by pricking the tip of the finger with a small lancet. The lancet holds a tiny needle that can be jabbed into the finger or placed in a spring-loaded device that easily and quickly pierces the skin. Most people find that the pricking causes only minimal discomfort. Then, a drop of blood is placed on a reagent strip. The strip contains chemicals that undergo changes depending on the glucose level. The glucose meter reads the changes in the test strip and reports the result on a digital display. Some devices allow the blood sample to be obtained from other sites, such as the palm, forearm, upper arm, thigh, or calf. Home glucose meters are smaller than a deck of cards.
Sasigarn A Bowden, MD Associate Professor of Pediatrics, Section of Pediatric Endocrinology, Metabolism and Diabetes, Department of Pediatrics, Ohio State University College of Medicine; Pediatric Endocrinologist, Associate Fellowship Program Director, Division of Endocrinology, Nationwide Children’s Hospital; Affiliate Faculty/Principal Investigator, Center for Clinical Translational Research, Research Institute at Nationwide Children’s Hospital
While poor vision is hardly uncommon—more than 60 percent of the American population wears glasses or contacts, after all—sudden changes in your vision, especially blurriness, need to be addressed by your doctor. Blurry vision is often a symptom of diabetes, as high blood sugar levels can cause swelling in the lenses of your eye, distorting your sight in the process. Fortunately, for many people, the effect is temporary and goes away when their blood sugar is being managed.
You should expect your dentist to inquire about how you monitor your blood sugar and your current status (e.g. most recent HbA1c, medication profile). For most routine dental procedures (e.g. examinations, simple fillings, routine cleanings), no special alterations in the delivery of dental care are necessary. However, more involved procedures, such as extensive surgery or treatment of serious infection, may interfere with your normal diabetes management. For such cases, your dentist will work with your physician to ensure the most appropriate approach to care is undertaken. For example, if you need a surgical procedure that will temporarily interfere with your ability to eat, special modifications regarding your nutrition and medication dosing may be prescribed. Finally, if you notice any unusual changes in your mouth (e.g. swelling, pain, red areas) you should see your dentist as soon as possible. These changes may indicate the presence of an infection that may compromise your normal blood sugar control and lead to a worsening of your ability to fight infection. As a result, your infection could become more difficult to treat.
Diabetes insipidus is considered very rare in less 20,000 cases diagnosed per year. Diabetes mellitus is more common, with type 2 diabetes being more common than type 1. There are more than 3 million cases of type 2 diabetes. Unlike diabetes mellitus, diabetes insipidus is not treated by controlling insulin levels. Depending on your symptoms, your doctor may prescribe a low-salt diet, hormone therapy, or have you increase your water intake. 
American Diabetes Association Joslin Diabetes Center Mayo Clinic International Diabetes Federation Canadian Diabetes Association National Institute of Diabetes and Digestive and Kidney Diseases Diabetes Daily American Heart Association Diabetes Forecast Diabetic Living American Association of Clinical Endocrinologists European Association for the Study of Diabetes
Diabetes Forum App Find support, ask questions and share your experiences with 281,823 members of the diabetes community. Recipe App Delicious diabetes recipes, updated every Monday. Filter recipes by carbs, calories and time to cook. Low Carb Program Join 250,000 people on the award-winning education program for people with type 2 diabetes, prediabetes and obesity. Hypo Awareness Program The first comprehensive, free and open to all online step-by-step guide to improving hypo awareness. DiabetesPA Your diabetes personal assistant. Monitor every aspect of your diabetes. Simple, practical, free.
Most cases of diabetes involve many genes, with each being a small contributor to an increased probability of becoming a type 2 diabetic.[10] If one identical twin has diabetes, the chance of the other developing diabetes within his lifetime is greater than 90%, while the rate for nonidentical siblings is 25–50%.[13] As of 2011, more than 36 genes had been found that contribute to the risk of type 2 diabetes.[37] All of these genes together still only account for 10% of the total heritable component of the disease.[37] The TCF7L2 allele, for example, increases the risk of developing diabetes by 1.5 times and is the greatest risk of the common genetic variants.[13] Most of the genes linked to diabetes are involved in beta cell functions.[13]

The blood vessels and blood are the highways that transport sugar from where it is either taken in (the stomach) or manufactured (in the liver) to the cells where it is used (muscles) or where it is stored (fat). Sugar cannot go into the cells by itself. The pancreas releases insulin into the blood, which serves as the helper, or the "key," that lets sugar into the cells for use as energy.
Diabetes mellitus occurs throughout the world but is more common (especially type 2) in more developed countries. The greatest increase in rates has however been seen in low- and middle-income countries,[101] where more than 80% of diabetic deaths occur.[105] The fastest prevalence increase is expected to occur in Asia and Africa, where most people with diabetes will probably live in 2030.[106] The increase in rates in developing countries follows the trend of urbanization and lifestyle changes, including increasingly sedentary lifestyles, less physically demanding work and the global nutrition transition, marked by increased intake of foods that are high energy-dense but nutrient-poor (often high in sugar and saturated fats, sometimes referred to as the "Western-style" diet).[101][106] The global prevalence of diabetes might increase by 55% between 2013 and 2035.[101]
People with T2D produce insulin, but their bodies don’t use it correctly; this is referred to as being insulin resistant. People with type 2 diabetes may also be unable to produce enough insulin to handle the glucose in their body. In these instances, insulin is needed to allow the glucose to travel from the bloodstream into our cells, where it’s used to create energy.
The classic symptoms of diabetes are polyuria (frequent urination), polydipsia (increased thirst), polyphagia (increased hunger), and weight loss.[23] Other symptoms that are commonly present at diagnosis include a history of blurred vision, itchiness, peripheral neuropathy, recurrent vaginal infections, and fatigue.[13] Many people, however, have no symptoms during the first few years and are diagnosed on routine testing.[13] A small number of people with type 2 diabetes mellitus can develop a hyperosmolar hyperglycemic state (a condition of very high blood sugar associated with a decreased level of consciousness and low blood pressure).[13]
When you have diabetes, excess sugar (glucose) builds up in your blood. Your kidneys are forced to work overtime to filter and absorb the excess sugar. If your kidneys can't keep up, the excess sugar is excreted into your urine, dragging along fluids from your tissues. This triggers more frequent urination, which may leave you dehydrated. As you drink more fluids to quench your thirst, you'll urinate even more.

Apart from severe DKA or hypoglycemia, type 1 diabetes mellitus has little immediate morbidity. The risk of complications relates to diabetic control. With good management, patients can expect to lead full, normal, and healthy lives. Nevertheless, the average life expectancy of a child diagnosed with type 1 diabetes mellitus has been variously suggested to be reduced by 13-19 years, compared with their nondiabetic peers. [34]
In 2013, of the estimated 382 million people with diabetes globally, more than 80 per cent lived in LMIC. It was estimated that India had 65.1 million adults with diabetes in 2013, and had the 2nd position among the top 10 countries with the largest number of diabetes. This number is predicted to increase to 109 million by 2035 unless steps are taken to prevent new cases of diabetes1. Primary prevention of diabetes is feasible and strategies such as lifestyle modification are shown to be effective in populations of varied ethnicity2,3. However, for implementation of the strategies at the population level, national programmes which are culturally and socially acceptable and practical have to be formulated which are currently lacking in most of the developed and developing countries. Early diagnosis and institution of appropriate therapeutic measures yield the desired glycaemic outcomes and prevent the vascular complications4.
All types of diabetes mellitus have something in common. Normally, your body breaks down the sugars and carbohydrates you eat into a special sugar called glucose. Glucose fuels the cells in your body. But the cells need insulin, a hormone, in your bloodstream in order to take in the glucose and use it for energy. With diabetes mellitus, either your body doesn't make enough insulin, it can't use the insulin it does produce, or a combination of both.
Jump up ^ Emadian A, Andrews RC, England CY, Wallace V, Thompson JL (November 2015). "The effect of macronutrients on glycaemic control: a systematic review of dietary randomised controlled trials in overweight and obese adults with type 2 diabetes in which there was no difference in weight loss between treatment groups". The British Journal of Nutrition. 114 (10): 1656–66. doi:10.1017/S0007114515003475. PMC 4657029. PMID 26411958.
The blood vessels and blood are the highways that transport sugar from where it is either taken in (the stomach) or manufactured (in the liver) to the cells where it is used (muscles) or where it is stored (fat). Sugar cannot go into the cells by itself. The pancreas releases insulin into the blood, which serves as the helper, or the "key," that lets sugar into the cells for use as energy.
Glucose in your body can cause yeast infections. This is because glucose speeds the growth of fungus. There are over-the-counter and prescription medications to treat yeast infections. You can potentially avoid yeast infections by maintaining better control of your blood sugar. Take insulin as prescribed, exercise regularly, reduce your carb intake, choose low-glycemic foods, and monitor your blood sugar.
×