If sugars in general are not associated with increased diabetes risk, but sodas are, it suggests the possibility that something other than sugar explains this relationship.16 Sodas are often accompanied by cheeseburgers, chicken nuggets, and other unhealthful foods. That is, soda consumption can be a sign of a diet focusing on fast foods or an overall unhealthful diet and lifestyle. And sugary snack foods (e.g., cookies and snack pastries) are often high in fat; the sugar lures us in to the fat calories hiding inside. Some, but not all, observational trials have sought to control for these confounding variables. 
The more common form of diabetes, Type II, occurs in approximately 3-5% of Americans under 50 years of age, and increases to 10-15% in those over 50. More than 90% of the diabetics in the United States are Type II diabetics. Sometimes called age-onset or adult-onset diabetes, this form of diabetes occurs most often in people who are overweight and who do not exercise. It is also more common in people of Native American, Hispanic, and African-American descent. People who have migrated to Western cultures from East India, Japan, and Australian Aboriginal cultures also are more likely to develop Type II diabetes than those who remain in their original countries.
The brain depends on glucose as a fuel. As glucose levels drop below 65 mg/dL (3.2 mmol/L) counterregulatory hormones (eg, glucagon, cortisol, epinephrine) are released, and symptoms of hypoglycemia develop. These symptoms include sweatiness, shaking, confusion, behavioral changes, and, eventually, coma when blood glucose levels fall below 30-40 mg/dL.
Using insulin to get blood glucose levels to a healthy level is a good thing, not a bad one. For most people, type 2 diabetes is a progressive disease. When first diagnosed, many people with type 2 diabetes can keep their blood glucose at a healthy level with a combination of meal planning, physical activity, and taking oral medications. But over time, the body gradually produces less and less of its own insulin, and eventually oral medications may not be enough to keep blood glucose levels in a healthy range. 
Jump up ^ Palmer, Suetonia C.; Mavridis, Dimitris; Nicolucci, Antonio; Johnson, David W.; Tonelli, Marcello; Craig, Jonathan C.; Maggo, Jasjot; Gray, Vanessa; De Berardis, Giorgia; Ruospo, Marinella; Natale, Patrizia; Saglimbene, Valeria; Badve, Sunil V.; Cho, Yeoungjee; Nadeau-Fredette, Annie-Claire; Burke, Michael; Faruque, Labib; Lloyd, Anita; Ahmad, Nasreen; Liu, Yuanchen; Tiv, Sophanny; Wiebe, Natasha; Strippoli, Giovanni F.M. (19 July 2016). "Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes". JAMA: the Journal of the American Medical Association. 316 (3): 313–24. doi:10.1001/jama.2016.9400. PMID 27434443.
George P Chrousos, MD, FAAP, MACP, MACE, FRCP(London) is a member of the following medical societies: American Academy of Pediatrics, American College of Physicians, American Pediatric Society, American Society for Clinical Investigation, Association of American Physicians, Endocrine Society, Pediatric Endocrine Society, Society for Pediatric Research, American College of Endocrinology
Diabetes is a metabolic disorder that occurs when your blood sugar (glucose), is too high (hyperglycemia). Glucose is what the body uses for energy, and the pancreas produces a hormone called insulin that helps convert the glucose from the food you eat into energy. When the body either does not produce enough insulin, does not produce any at all, or your body becomes resistant to the insulin, the glucose does not reach your cells to be used for energy. This results in the health condition termed diabetes.

Diabetes can also be diagnosed if a blood glucose level taken any time of the day without regards to meals is 11.1 mmol/L or higher, plus you have symptoms characteristic of diabetes (e.g., increase thirst, increase urination, unexplained weight loss). A doctor may also examine the eyes for signs of damage to the blood vessels of the retina (back of the eye). Finally, diabetes mellitus is diagnosed if the 3-month cumulative blood sugar average test, known as hemoglobin A1C or glycated hemoglobin, is 6.5% or higher.
Type 2 diabetes, a form of diabetes mellitus, is likely one of the better-known chronic diseases in the world — and that's no surprise. Data from the Centers for Disease Control and Prevention suggest in the United States alone, 30.3 million people, or 9.4 percent of the U.S. population, has diabetes, and the majority of these people have type 2. (1)
The prognosis of diabetes is related to the extent to which the condition is kept under control to prevent the development of the complications described in the preceding sections. Some of the more serious complications of diabetes such as kidney failure and cardiovascular disease, can be life-threatening. Acute complications such as diabetic ketoacidosis can also be life-threatening. As mentioned above, aggressive control of blood sugar levels can prevent or delay the onset of complications, and many people with diabetes lead long and full lives.
Nerve damage from diabetes is called diabetic neuropathy and is also caused by disease of small blood vessels. In essence, the blood flow to the nerves is limited, leaving the nerves without blood flow, and they get damaged or die as a result (a term known as ischemia). Symptoms of diabetic nerve damage include numbness, burning, and aching of the feet and lower extremities. When the nerve disease causes a complete loss of sensation in the feet, patients may not be aware of injuries to the feet, and fail to properly protect them. Shoes or other protection should be worn as much as possible. Seemingly minor skin injuries should be attended to promptly to avoid serious infections. Because of poor blood circulation, diabetic foot injuries may not heal. Sometimes, minor foot injuries can lead to serious infection, ulcers, and even gangrene, necessitating surgical amputation of toes, feet, and other infected parts.
DM affects at least 16 million U.S. residents, ranks seventh as a cause of death in the United States, and costs the national economy over $100 billion yearly. The striking increase in the prevalence of DM in the U.S. during recent years has been linked to a rise in the prevalence of obesity. About 95% of those with DM have Type 2, in which the pancreatic beta cells retain some insulin-producing potential, and the rest have Type 1, in which exogenous insulin is required for long-term survival. In Type 1 DM, which typically causes symptoms before age 25, an autoimmune process is responsible for beta cell destruction. Type 2 DM is characterized by insulin resistance in peripheral tissues as well as a defect in insulin secretion by beta cells. Insulin regulates carbohydrate metabolism by mediating the rapid transport of glucose and amino acids from the circulation into muscle and other tissue cells, by promoting the storage of glucose in liver cells as glycogen, and by inhibiting gluconeogenesis. The normal stimulus for the release of insulin from the pancreas is a rise in the concentration of glucose in circulating blood, which typically occurs within a few minutes after a meal. When such a rise elicits an appropriate insulin response, so that the blood level of glucose falls again as it is taken into cells, glucose tolerance is said to be normal. The central fact in DM is an impairment of glucose tolerance of such a degree as to threaten or impair health. Long recognized as an independent risk factor for cardiovascular disease, DM is often associated with other risk factors, including disorders of lipid metabolism (elevation of very-low-density lipoprotein cholesterol and triglycerides and depression of high-density lipoprotein cholesterol), obesity, hypertension, and impairment of renal function. Sustained elevation of serum glucose and triglycerides aggravates the biochemical defect inherent in DM by impairing insulin secretion, insulin-mediated glucose uptake by cells, and hepatic regulation of glucose output. Long-term consequences of the diabetic state include macrovascular complications (premature or accelerated atherosclerosis with resulting coronary, cerebral, and peripheral vascular insufficiency) and microvascular complications (retinopathy, nephropathy, and neuropathy). It is estimated that half those with DM already have some complications when the diagnosis is made. The American Diabetes Association (ADA) recommends screening for DM for people with risk factors such as obesity, age 45 years or older, family history of DM, or history of gestational diabetes. If screening yields normal results, it should be repeated every 3 years. The diagnosis of DM depends on measurement of plasma glucose concentration. The diagnosis is confirmed when any two measurements of plasma glucose performed on different days yield levels at or above established thresholds: in the fasting state, 126 mg/dL (7 mmol/L); 2 hours postprandially (after a 75-g oral glucose load) or at random, 200 mg/dL (11.1 mmol/L). A fasting plasma glucose of 100-125 mg/dL (5.5-6.9 mmol/L) or a 2-hour postprandial glucose of 140-199 mg/dL (7.8-11 mmol/L) is defined as impaired glucose tolerance. People with impaired glucose tolerance are at higher risk of developing DM within 10 years. For such people, lifestyle modification such as weight reduction and exercise may prevent or postpone the onset of frank DM. Current recommendations for the management of DM emphasize education and individualization of therapy. Controlled studies have shown that rigorous maintenance of plasma glucose levels as near to normal as possible at all times substantially reduces the incidence and severity of long-term complications, particularly microvascular complications. Such control involves limitation of dietary carbohydrate and saturated fat; monitoring of blood glucose, including self-testing by the patient and periodic determination of glycosylated hemoglobin; and administration of insulin (particularly in Type 1 DM), drugs that stimulate endogenous insulin production (in Type 2 DM), or both. The ADA recommends inclusion of healthful carbohydrate-containing foods such as whole grains, fruits, vegetables, and low-fat milk in a diabetic diet. Restriction of dietary fat to less than 10% of total calories is recommended for people with diabetes, as for the general population. Further restriction may be appropriate for those with heart disease or elevated cholesterol or triglyceride levels. The ADA advises that high-protein, low-carbohydrate diets have no particular merit in long-term weight control or in maintenance of a normal plasma glucose level in DM. Pharmaceutical agents developed during the 1990s improve control of DM by enhancing responsiveness of cells to insulin, counteracting insulin resistance, and reducing postprandial carbohydrate absorption. Tailor-made insulin analogues produced by recombinant DNA technology (for example, lispro, aspart, and glargine insulins) have broadened the range of pharmacologic properties and treatment options available. Their use improves both short-term and long-term control of plasma glucose and is associated with fewer episodes of hypoglycemia. SEE ALSO insulin resistance
Yet carbs are processed differently in the body based on their type: While simple carbs are digested and metabolized quickly, complex carbs take longer to go through this system, resulting in more stable blood sugar. “It comes down to their chemical forms: A simple carbohydrate has a simpler chemical makeup, so it doesn’t take as much for it to be digested, whereas the complex ones take a little longer,” Grieger explains.

Get to Know Your Medications: If you have diabetes, it is important to know and understand what your medications do. This can help to keep blood sugars controlled and prevent low and high blood sugars. Certain medicines need to be taken with food, or they will cause your blood sugar will drop. There are so many diabetes medications out there. Being your own advocate can help you. Make sure to tell your doctor if your medications are too expensive or if they are causing any side effects. If your medication regimen is not working for you, odds are your doctor can find a new medicine that might work better.
Diabetes can occur temporarily during pregnancy, and reports suggest that it occurs in 2% to 10% of all pregnancies. Significant hormonal changes during pregnancy can lead to blood sugar elevation in genetically predisposed individuals. Blood sugar elevation during pregnancy is called gestational diabetes. Gestational diabetes usually resolves once the baby is born. However, 35% to 60% of women with gestational diabetes will eventually develop type 2 diabetes over the next 10 to 20 years, especially in those who require insulin during pregnancy and those who remain overweight after their delivery. Women with gestational diabetes are usually asked to undergo an oral glucose tolerance test about six weeks after giving birth to determine if their diabetes has persisted beyond the pregnancy, or if any evidence (such as impaired glucose tolerance) is present that may be a clue to a risk for developing diabetes.
The American Diabetes Association recommends that blood sugars be 80mg/dL-130mg/dL before meals and less than or equal to 180mg/dL two hours after meals. Blood sugar targets are individualized based on a variety of factors such as age, length of diagnosis, if you have other health issues, etc. For example, if you are an elderly person, your targets maybe a bit higher than someone else. Ask your physician what targets are right for you.

In type 1 diabetes, other symptoms to watch for include unexplained weight loss, lethargy, drowsiness, and hunger. Symptoms sometimes occur after a viral illness. In some cases, a person may reach the point of diabetic ketoacidosis (DKA) before a type 1 diagnosis is made. DKA occurs when blood glucose is dangerously high and the body can't get nutrients into the cells because of the absence of insulin. The body then breaks down muscle and fat for energy, causing an accumulation of ketones in the blood and urine. Symptoms of DKA include a fruity odor on the breath; heavy, taxed breathing; and vomiting. If left untreated, DKA can result in stupor, unconsciousness, and even death.


The pain of diabetic nerve damage may respond to traditional treatments with certain medications such as gabapentin (Neurontin), phenytoin (Dilantin), and carbamazepine (Tegretol) that are traditionally used in the treatment of seizure disorders. Amitriptyline (Elavil, Endep) and desipramine (Norpraminine) are medications that are traditionally used for depression. While many of these medications are not indicated specifically for the treatment of diabetes related nerve pain, they are used by physicians commonly.
The progression of nephropathy in patients can be significantly slowed by controlling high blood pressure, and by aggressively treating high blood sugar levels. Angiotensin converting enzyme inhibitors (ACE inhibitors) or angiotensin receptor blockers (ARBs) used in treating high blood pressure may also benefit kidney disease in patients with diabetes.
Some people with type 2 diabetes are treated with insulin. Insulin is either injected with a syringe several times per day, or delivered via an insulin pump. The goal of insulin therapy is to mimic the way the pancreas would produce and distribute its own insulin, if it were able to manufacture it. Taking insulin does not mean you have done a bad job of trying to control your blood glucose—instead it simply means that your body doesn’t produce or use enough of it on its own to cover the foods you eat.
Type 2 DM is primarily due to lifestyle factors and genetics.[45] A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[16] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11]
Cardiovascular Medicine Book Dentistry Book Dermatology Book Emergency Medicine Book Endocrinology Book Gastroenterology Book Geriatric Medicine Book Gynecology Book Hematology and Oncology Book Human Immunodeficiency Virus Book Infectious Disease Book Jokes Book Mental Health Book Neonatology Book Nephrology Book Neurology Book Obstetrics Book Ophthalmology Book Orthopedics Book Otolaryngology Book Pathology and Laboratory Medicine Book Pediatrics Book Pharmacology Book Practice Management Book Prevention Book Pulmonology Book Radiology Book Rheumatology Book Sports Medicine Book Surgery Book Urology Book
Diabetes mellitus, or simply diabetes, is a group of diseases in which a person does not produce enough insulin, or because it does not respond to the insulin that is produced. Insulin is a hormone that controls the amount of glucose (sugar) in the blood. Diabetes leads to high blood sugar levels, which can lead to damage of blood vessels, organs, and nerves.

n a metabolic disorder caused primarily by a defect in the production of insulin by the islet cells of the pancreas, resulting in an inability to use carbohydrates. Characterized by hyperglycemia, glycosuria, polyuria, hyperlipemia (caused by imperfect catabolism of fats), acidosis, ketonuria, and a lowered resistance to infection. Periodontal manifestations if blood sugar is not being controlled may include recurrent and multiple periodontal abscesses, osteoporotic changes in alveolar bone, fungating masses of granulation tissue protruding from periodontal pockets, a lowered resistance to infection, and delay in healing after periodontal therapy. See also blood glucose level(s).
The problem with sweetened drinks is that, due to their liquid form, they’re among the fastest simple carbs to be digested in the body, causing blood sugar levels to spike even more than a simple carb in solid-food form would. Research supports this idea: A review published in November 2010 in the journal Diabetes Care suggested adding only one serving of a sweetened beverage to your diet may increase your risk for type 2 diabetes by 15 percent.
Occasionally, a child with hypoglycemic coma may not recover within 10 minutes, despite appropriate therapy. Under no circumstances should further treatment be given, especially intravenous glucose, until the blood glucose level is checked and still found to be subnormal. Overtreatment of hypoglycemia can lead to cerebral edema and death. If coma persists, seek other causes.
Diabetes is a serious and costly disease which is becoming increasingly common, especially in developing countries and disadvantaged minorities. However, there are ways of preventing it and/or controlling its progress. Public and professional awareness of the risk factors for, and symptoms of diabetes are an important step towards its prevention and control.

Older people may have a difficult time adding exercise to their daily life, particularly if they have not been active or if they have a disorder that limits their movement, such as arthritis. However, they may be able to add exercise to their usual routine. For example, they can walk instead of drive or climb the stairs instead of take the elevator. Also, many community organizations offer exercise programs designed for older people.


Diabetes has been recorded throughout history, since Egyptian times. It was given the name diabetes by the ancient Greek physician Aratus of Cappadocia. The full term, however, was not coined until 1675 in Britain by Thomas Willis, who rediscovered that the blood and urine of people with diabetes were sweet. This phenomenon had previously been discovered by ancient Indians.
Finally, modern society should probably shoulder at least some of the blame for the type 2 diabetes epidemic. Access to cheap, calorie-laden foods may even influence type 2 risk beyond simply their effects on body weight; the stuff that is in processed foods, like high-fructose corn syrup, could alter the body's chemistry or gut microbes in a way that affects health. Add to that the fact that most Americans are sedentary, spending their time sitting in cubicles, driving in cars, playing video games, or watching television. The lack of exercise, plus the abundance of unhealthy foods, cultivates a fertile breeding ground for diabetes.
FIGURE 19-1 ■. This figure shows the hyperbolic relationship of insulin resistance and beta cell function. On the y-axis is beta cell function as reflected in the first-phase insulin response during intravenous (IV) glucose infusion; on the x-axis is insulin sensitivity and its mirror image resistance. In a subject with normal glucose tolerance (NGT) and beta-cell reserve, an increase in insulin resistance results in increased insulin release and normal glucose tolerance. In an individual for whom the capacity to increase insulin release is compromised, increasing insulin resistance with partial or no beta-cell compensation results in progression from normal glucose tolerance, to impaired glucose tolerance (IGT), and finally to diabetes (T2D). Differences between these categories are small at high insulin sensitivity, which may be maintained by weight reduction, exercise, and certain drugs. At a critical degree of insulin resistance, due to obesity or other listed factors, only a further small increment in resistance requires a large increase in insulin output. Those that can increase insulin secretion to this extent retain normal glucose tolerance; those who cannot achieve this degree of insulin secretion (e.g., due to a mild defect in genes regulating insulin synthesis, insulin secretion, insulin action, or an ongoing immune destruction of beta cells) now unmask varying degrees of carbohydrate intolerance. The product of insulin sensitivity (the reciprocal of insulin resistance) and acute insulin response (a measurement beta-cell function) has been called the “disposition index.” This index remains constant in an individual with normal beta cell compensation in response to changes in insulin resistance. IGT, impaired glucose tolerance; NGT, normal glucose tolerance; T2D, type 2 diabetes.
Hypoglycemia, or low blood sugar, can be caused by too much insulin, too little food (or eating too late to coincide with the action of the insulin), alcohol consumption, or increased exercise. A patient with symptoms of hypoglycemia may be hungry, cranky, confused, and tired. The patient may become sweaty and shaky. Left untreated, the patient can lose consciousness or have a seizure. This condition is sometimes called an insulin reaction and should be treated by giving the patient something sweet to eat or drink like a candy, sugar cubes, juice, or another high sugar snack.
There’s no cure for type 1 diabetes. People with type 1 diabetes don’t produce insulin, so it must be regularly injected into your body. Some people take injections into the soft tissue, such as the stomach, arm, or buttocks, several times per day. Other people use insulin pumps. Insulin pumps supply a steady amount of insulin into the body through a small tube.
The symptoms may relate to fluid loss and polyuria, but the course may also be insidious. Diabetic animals are more prone to infections. The long-term complications recognized in humans are much rarer in animals. The principles of treatment (weight loss, oral antidiabetics, subcutaneous insulin) and management of emergencies (e.g. ketoacidosis) are similar to those in humans.[123]
Prediabetes is a condition in which blood glucose levels are too high to be considered normal but not high enough to be labeled diabetes. People have prediabetes if their fasting blood glucose level is between 100 mg/dL and 125 mg/dL or if their blood glucose level 2 hours after a glucose tolerance test is between 140 mg/dL and 199 mg/dL. Prediabetes carries a higher risk of future diabetes as well as heart disease. Decreasing body weight by 5 to 10% through diet and exercise can significantly reduce the risk of developing future diabetes.
Abnormal cholesterol and triglyceride levels. If you have low levels of high-density lipoprotein (HDL), or "good," cholesterol, your risk of type 2 diabetes is higher. Triglycerides are another type of fat carried in the blood. People with high levels of triglycerides have an increased risk of type 2 diabetes. Your doctor can let you know what your cholesterol and triglyceride levels are.
×