While there are competing explanations of the link between obesity and type 2 diabetes, Gerald Shulman, MD, PhD, a professor of internal medicine and physiology at Yale University, believes the key is figuring out insulin resistance. He has studied the causes of insulin resistance for 25 years and thinks he may have the answer to the weight-diabetes link.
Regarding age, data shows that for each decade after 40 years of age regardless of weight there is an increase in incidence of diabetes. The prevalence of diabetes in persons 65 years of age and older is around 25%. Type 2 diabetes is also more common in certain ethnic groups. Compared with a 7% prevalence in non-Hispanic Caucasians, the prevalence in Asian Americans is estimated to be 8.0%, in Hispanics 13%, in blacks around 12.3%, and in certain Native American communities 20% to 50%. Finally, diabetes occurs much more frequently in women with a prior history of diabetes that develops during pregnancy (gestational diabetes).
Insulin is a hormone that is produced by specialized cells (beta cells) of the pancreas. (The pancreas is a deep-seated organ in the abdomen located behind the stomach.) In addition to helping glucose enter the cells, insulin is also important in tightly regulating the level of glucose in the blood. After a meal, the blood glucose level rises. In response to the increased glucose level, the pancreas normally releases more insulin into the bloodstream to help glucose enter the cells and lower blood glucose levels after a meal. When the blood glucose levels are lowered, the insulin release from the pancreas is turned down. It is important to note that even in the fasting state there is a low steady release of insulin than fluctuates a bit and helps to maintain a steady blood sugar level during fasting. In normal individuals, such a regulatory system helps to keep blood glucose levels in a tightly controlled range. As outlined above, in patients with diabetes, the insulin is either absent, relatively insufficient for the body's needs, or not used properly by the body. All of these factors cause elevated levels of blood glucose (hyperglycemia).
If you are at increased risk of diabetes, have symptoms of diabetes, or have pre-diabetes (a major warning sign for diabetes), your doctor will check to see if you have diabetes. Your doctor may also check to see if you have diabetes if you are over the age of 45, have a family history of the disease, are overweight, or if you are at increased risk for another reason. The tests used to check for diabetes are the same tests used to check for pre-diabetes.
Aspirin should be used as secondary prophylaxis in all diabetic people with evidence of macrovascular disease, and it should be strongly considered as primary prevention in diabetic subjects with other risk factors for macrovascular disease, such as hypertension, cigarette smoking, dyslipidemia, obesity, and albuminuria (macro or micro).228 Because of the platelet defects associated with diabetes, it is recommended that the dose of aspirin should be 300 mg per day,228–230 although the American Diabetes Association’s position statement (http://www.diabetes.org/DiabetesCare/supplement198/s45.htm) advocates a dose of 81 to 325 mg enteric-coated aspirin per day. If the patient cannot tolerate aspirin, then clopidogrel231 can be used.
They may need to take medications in order to keep glucose levels within a healthy range. Medications for type 2 diabetes are usually taken by mouth in the form of tablets and should always be taken around meal times and as prescribed by the doctor. However, if blood glucose is not controlled by oral medications, a doctor may recommend insulin injections.
Being overweight is a risk factor for developing diabetes, but other risk factors such as how much physical activity you get, family history, ethnicity, and age also play a role. Unfortunately, many people think that weight is the only risk factor for type 2 diabetes, but many people with type 2 diabetes are at a normal weight or only moderately overweight.
Doctors can also measure the level of a protein, hemoglobin A1C (also called glycosylated or glycolated hemoglobin), in the blood. Hemoglobin is the red, oxygen-carrying substance in red blood cells. When blood is exposed to high blood glucose levels over a period of time, glucose attaches to the hemoglobin and forms glycosylated hemoglobin. The hemoglobin A1C level (reported as the percentage of hemoglobin that is A1C) reflects long-term trends in blood glucose levels rather than rapid changes.

By the time a person is diagnosed with type 2 diabetes, up to 50% of the beta cells in the pancreas have usually been damaged. In fact, these cells may have been declining for up to 10 years before the diagnosis. Along with raised blood pressure and elevated cholesterol levels, this predisposes the person to arterial damage years before diabetes is diagnosed. So, at the time of diagnosis, the person is already at risk for cardiovascular disease (CVD).
Insulin is essential to process carbohydrates, fat, and protein. Insulin reduces blood glucose levels by allowing glucose to enter muscle cells and by stimulating the conversion of glucose to glycogen (glycogenesis) as a carbohydrate store. Insulin also inhibits the release of stored glucose from liver glycogen (glycogenolysis) and slows the breakdown of fat to triglycerides, free fatty acids, and ketones. It also stimulates fat storage. Additionally, insulin inhibits the breakdown of protein and fat for glucose production (gluconeogenesis) in the liver and kidneys.

It is a considerable challenge to obtain the goals of the intensively treated patients in the DCCT with the vast majority of people with diabetes given the more limited health care resources typically available in routine practice. If diabetes control can be improved without significant damage to quality of life, the economic, health, and quality of life savings associated with a reduction in complications in later life will be vast. Although some people who have had poorly controlled diabetes over many years do not develop complications, complications commonly arise after 15–20 years of diabetes and individuals in their 40s or even 30s may develop several complications in rapid succession. However, up until the early 1980s, patients had no way of monitoring their own blood glucose levels at home. Urine glucose monitoring only told them when their blood glucose had exceeded the renal threshold of approximately 10 mmol/L (i.e., was far too high), without being able to discriminate between the too high levels of 7–10 mmol/L or the hypoglycemic levels below 4 mmol/L. Clinics relied on random blood glucose testing and there were no measures of average blood glucose over a longer period. Since the 1980s there have been measures of glycosylated hemoglobin (GHb, HbA1, or HbA1c) which indicate average blood glucose over a six to eight week period and measures of glycosylated protein, fructosamine, which indicates average blood glucose over a two-week period. Blood-glucose meters for patients were first introduced in the early 1980s and the accuracy and convenience of the meters and the reagent strips they use has improved dramatically since early models. By the late 1990s blood-glucose monitoring is part of the daily routine for most people using insulin in developed countries. Blood-glucose monitoring is less often prescribed for tablet- and diet-alone-treated patients, financial reasons probably being allowed to outweigh the educational value of accurate feedback in improving control long term. The reduced risk of hypoglycemia and diabetic ketoacidosis in NIDDM patients not using insulin means that acute crises rarely arise in these patients though their risk of long-term complications is at least as great as in IDDM and might be expected to be reduced if feedback from blood-glucose monitoring were provided.
Some cases of diabetes are caused by the body's tissue receptors not responding to insulin (even when insulin levels are normal, which is what separates it from type 2 diabetes); this form is very uncommon. Genetic mutations (autosomal or mitochondrial) can lead to defects in beta cell function. Abnormal insulin action may also have been genetically determined in some cases. Any disease that causes extensive damage to the pancreas may lead to diabetes (for example, chronic pancreatitis and cystic fibrosis). Diseases associated with excessive secretion of insulin-antagonistic hormones can cause diabetes (which is typically resolved once the hormone excess is removed). Many drugs impair insulin secretion and some toxins damage pancreatic beta cells. The ICD-10 (1992) diagnostic entity, malnutrition-related diabetes mellitus (MRDM or MMDM, ICD-10 code E12), was deprecated by the World Health Organization (WHO) when the current taxonomy was introduced in 1999.[53]
Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) refer to levels of blood glucose concentration above the normal range, but below those which are diagnostic for diabetes. Subjects with IGT and/or IFG are at substantially higher risk of developing diabetes and cardiovascular disease than those with normal glucose tolerance. The benefits of clinical intervention in subjects with moderate glucose intolerance is a topic of much current interest.

While poor vision is hardly uncommon—more than 60 percent of the American population wears glasses or contacts, after all—sudden changes in your vision, especially blurriness, need to be addressed by your doctor. Blurry vision is often a symptom of diabetes, as high blood sugar levels can cause swelling in the lenses of your eye, distorting your sight in the process. Fortunately, for many people, the effect is temporary and goes away when their blood sugar is being managed.

The classic symptoms of diabetes such as polyuria, polydypsia and polyphagia occur commonly in type 1 diabetes, which has a rapid development of severe hyperglycaemia and also in type 2 diabetes with very high levels of hyperglycaemia. Severe weight loss is common only in type 1 diabetes or if type 2 diabetes remains undetected for a long period. Unexplained weight loss, fatigue and restlessness and body pain are also common signs of undetected diabetes. Symptoms that are mild or have gradual development could also remain unnoticed.


Considering that being overweight is a risk factor for diabetes, it sounds counterintuitive that shedding pounds could be one of the silent symptoms of diabetes. “Weight loss comes from two things,” says Dr. Cypess. “One, from the water that you lose [from urinating]. Two, you lose some calories in the urine and you don’t absorb all the calories from the sugar in your blood.” Once people learn they have diabetes and start controlling their blood sugar, they may even experience some weight gain—but “that’s a good thing,” says Dr. Cypess, because it means your blood sugar levels are more balanced.
A growing number of people in the U.S. and throughout the world are overweight and more prone to develop Type 2 diabetes, particularly if they have the genetics for it. "Type 2 diabetes can be caused by genetic inheritance, but by far the obesity epidemic has created massive increases in the occurrence of Type 2 diabetes. This is due to the major insulin resistance that is created by obesity," Gage says.
Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar. It is among the most common of chronic disorders, affecting up to 5–10% of the adult population of the Western world. The prevalence of diabetes is increasing dramatically; it has been estimated that the worldwide prevalence will increase by more than 50% between the years 2000 and 2030 (Wild et al., 2004). It is clearly established that diabetes mellitus is not a single disease, but a genetically heterogeneous group of disorders that share glucose intolerance in common. The concept of genetic heterogeneity (i.e. that different genetic and/or environmental etiologic factors can result in similar phenotypes) has significantly altered the genetic analysis of this common disorder.
Diabetes can also result from other hormonal disturbances, such as excessive growth hormone production (acromegaly) and Cushing's syndrome. In acromegaly, a pituitary gland tumor at the base of the brain causes excessive production of growth hormone, leading to hyperglycemia. In Cushing's syndrome, the adrenal glands produce an excess of cortisol, which promotes blood sugar elevation.
The information provided does not constitute a diagnosis of your condition. You should consult a medical practitioner or other appropriate health care professional for a physical exmanication, diagnosis and formal advice. Health24 and the expert accept no responsibility or liability for any damage or personal harm you may suffer resulting from making use of this content.

Type 2 diabetes was also previously referred to as non-insulin dependent diabetes mellitus (NIDDM), or adult-onset diabetes mellitus (AODM). In type 2 diabetes, patients can still produce insulin, but do so relatively inadequately for their body's needs, particularly in the face of insulin resistance as discussed above. In many cases this actually means the pancreas produces larger than normal quantities of insulin. A major feature of type 2 diabetes is a lack of sensitivity to insulin by the cells of the body (particularly fat and muscle cells).
Healthy lifestyle choices can help you prevent type 2 diabetes. Even if you have diabetes in your family, diet and exercise can help you prevent the disease. If you've already received a diagnosis of diabetes, you can use healthy lifestyle choices to help prevent complications. And if you have prediabetes, lifestyle changes can slow or halt the progression from prediabetes to diabetes.

Cardiovascular Medicine Book Dentistry Book Dermatology Book Emergency Medicine Book Endocrinology Book Gastroenterology Book Geriatric Medicine Book Gynecology Book Hematology and Oncology Book Human Immunodeficiency Virus Book Infectious Disease Book Jokes Book Mental Health Book Neonatology Book Nephrology Book Neurology Book Obstetrics Book Ophthalmology Book Orthopedics Book Otolaryngology Book Pathology and Laboratory Medicine Book Pediatrics Book Pharmacology Book Practice Management Book Prevention Book Pulmonology Book Radiology Book Rheumatology Book Sports Medicine Book Surgery Book Urology Book
Anal itching is the irritation of the skin at the exit of the rectum, known as the anus, accompanied by the desire to scratch. Causes include everything from irritating foods we eat, to certain diseases, and infections. Treatment options include medicine including, local anesthetics, for example, lidocaine (Xylocaine), pramoxine (Fleet Pain-Relief), and benzocaine (Lanacane Maximum Strength), vasoconstrictors, for example, phenylephrine 0.25% (Medicone Suppository, Preparation H, Rectocaine), protectants, for example, glycerin, kaolin, lanolin, mineral oil (Balneol), astringents, for example, witch hazel and calamine, antiseptics, for example, boric acid and phenol, aeratolytics, for example, resorcinol, analgesics, for example, camphor and juniper tar, and corticosteroids.
Rates of type 2 diabetes have increased markedly since 1960 in parallel with obesity.[17] As of 2015 there were approximately 392 million people diagnosed with the disease compared to around 30 million in 1985.[11][18] Typically it begins in middle or older age,[6] although rates of type 2 diabetes are increasing in young people.[19][20] Type 2 diabetes is associated with a ten-year-shorter life expectancy.[10] Diabetes was one of the first diseases described.[21] The importance of insulin in the disease was determined in the 1920s.[22]

Type 2 diabetes (T2D) is more common than type 1 diabetes with about 90 to 95 percent of people with diabetes having T2D. According to the Centers for Disease Control and Prevention’s report, 30.3 million Americans, or 9.4% of the US population have diabetes.1 More alarming, an estimated 84 million more American adults have prediabetes, which if not treated, will advance to diabetes within five years.1

Can diabetes be prevented? Why are so many people suffering from it now over decades past? While there will never be anyway to possibly avoid genetic diabetes, there have been cases where dietary changes could perhaps have been made to delay or prevent the ailment from further developing. Doctors report that obesity plays a role, as well as activity levels, and even overall mental health often can be common threads of pre-diabetic patients.
You are more likely to develop type 2 diabetes if you are not physically active and are overweight or obese. Extra weight sometimes causes insulin resistance and is common in people with type 2 diabetes. The location of body fat also makes a difference. Extra belly fat is linked to insulin resistance, type 2 diabetes, and heart and blood vessel disease. To see if your weight puts you at risk for type 2 diabetes, check out these Body Mass Index (BMI) charts.
Jump up ^ Emadian A, Andrews RC, England CY, Wallace V, Thompson JL (November 2015). "The effect of macronutrients on glycaemic control: a systematic review of dietary randomised controlled trials in overweight and obese adults with type 2 diabetes in which there was no difference in weight loss between treatment groups". The British Journal of Nutrition. 114 (10): 1656–66. doi:10.1017/S0007114515003475. PMC 4657029. PMID 26411958.
In this health topic, we discuss hyperglycemic hyperosmolar nonketotic syndrome (HHNS), an extremely serious complication that can lead to diabetic coma and even death in type 2 diabetes. This serious condition occurs when the blood sugar gets too high and the body becomes severely dehydrated. To prevent HHNS and diabetic coma in type 2 diabetes, check your blood sugar regularly as recommended by your health care provider; check your blood sugar more frequently when you are sick, drink plenty of fluids, and watch for signs of dehydration.
×