Good metabolic control can delay the onset and progression of diabetic retinopathy. Loss of vision and blindness in persons with diabetes can be prevented by early detection and treatment of vision-threatening retinopathy: regular eye examinations and timely intervention with laser treatment, or through surgery in cases of advanced retinopathy. There is evidence that, even in developed countries, a large proportion of those in need is not receiving such care due to lack of public and professional awareness, as well as an absence of treatment facilities. In developing countries, in many of which diabetes is now common, such care is inaccessible to the majority of the population.

People with these risk factors should be screened for diabetes at least once every three years. Diabetes risk can be estimated using online risk calculators. Doctors may measure fasting blood glucose levels and hemoglobin A1C level, or do an oral glucose tolerance test. If the test results are on the border between normal and abnormal, doctors do the screening tests more often, at least once a year.
Jump up ^ Palmer, Suetonia C.; Mavridis, Dimitris; Nicolucci, Antonio; Johnson, David W.; Tonelli, Marcello; Craig, Jonathan C.; Maggo, Jasjot; Gray, Vanessa; De Berardis, Giorgia; Ruospo, Marinella; Natale, Patrizia; Saglimbene, Valeria; Badve, Sunil V.; Cho, Yeoungjee; Nadeau-Fredette, Annie-Claire; Burke, Michael; Faruque, Labib; Lloyd, Anita; Ahmad, Nasreen; Liu, Yuanchen; Tiv, Sophanny; Wiebe, Natasha; Strippoli, Giovanni F.M. (19 July 2016). "Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes". JAMA: the Journal of the American Medical Association. 316 (3): 313–24. doi:10.1001/jama.2016.9400. PMID 27434443.
Dr. Erica Oberg, ND, MPH, received a BA in anthropology from the University of Colorado, her doctorate of naturopathic medicine (ND) from Bastyr University, and a masters of public health (MPH) in health services research from the University of Washington. She completed her residency at the Bastyr Center for Natural Health in ambulatory primary care and fellowship training at the Health Promotion Research Center at the University of Washington.
Beta cells are vulnerable to more than just bad genes, which may explain the associations between type 2 diabetes and environmental factors that aren't related to how much fat a body has or where it is stored. Beta cells carry vitamin D receptors on their surface, and people with vitamin D deficiency are at increased risk for type 2. Plus, several studies have shown that people with higher levels of toxic substances in their blood—such as from the PCBs found in fish fat—are at increased risk of type 2 diabetes, though a cause-and-effect relationship hasn't been proved. (Toxic substances and vitamin D have also been implicated in type 1 diabetes, but the disease mechanism may be unrelated to what's going on in type 2.)

In patients with type 2 diabetes, stress, infection, and medications (such as corticosteroids) can also lead to severely elevated blood sugar levels. Accompanied by dehydration, severe blood sugar elevation in patients with type 2 diabetes can lead to an increase in blood osmolality (hyperosmolar state). This condition can worsen and lead to coma (hyperosmolar coma). A hyperosmolar coma usually occurs in elderly patients with type 2 diabetes. Like diabetic ketoacidosis, a hyperosmolar coma is a medical emergency. Immediate treatment with intravenous fluid and insulin is important in reversing the hyperosmolar state. Unlike patients with type 1 diabetes, patients with type 2 diabetes do not generally develop ketoacidosis solely on the basis of their diabetes. Since in general, type 2 diabetes occurs in an older population, concomitant medical conditions are more likely to be present, and these patients may actually be sicker overall. The complication and death rates from hyperosmolar coma is thus higher than in diabetic ketoacidosis.


The symptoms may relate to fluid loss and polyuria, but the course may also be insidious. Diabetic animals are more prone to infections. The long-term complications recognized in humans are much rarer in animals. The principles of treatment (weight loss, oral antidiabetics, subcutaneous insulin) and management of emergencies (e.g. ketoacidosis) are similar to those in humans.[123]
Glucose in your body can cause yeast infections. This is because glucose speeds the growth of fungus. There are over-the-counter and prescription medications to treat yeast infections. You can potentially avoid yeast infections by maintaining better control of your blood sugar. Take insulin as prescribed, exercise regularly, reduce your carb intake, choose low-glycemic foods, and monitor your blood sugar.
A positive result, in the absence of unequivocal high blood sugar, should be confirmed by a repeat of any of the above methods on a different day. It is preferable to measure a fasting glucose level because of the ease of measurement and the considerable time commitment of formal glucose tolerance testing, which takes two hours to complete and offers no prognostic advantage over the fasting test.[66] According to the current definition, two fasting glucose measurements above 7.0 mmol/l (126 mg/dl) is considered diagnostic for diabetes mellitus.

Examples of simple or refined carbohydrates, on the other hand, exist in various forms — from the sucrose in the table sugar you use to bake cookies, to the various kinds of added sugar in packaged snacks, fruit drinks, soda, and cereal. Simple carbohydrates are natural components of many fresh foods, too, such as the lactose in milk and the fructose in fruits, and therefore, a healthy, well-balanced diet will always contain these types of sugars.
Type 2 DM begins with insulin resistance, a condition in which cells fail to respond to insulin properly.[2] As the disease progresses, a lack of insulin may also develop.[12] This form was previously referred to as "non insulin-dependent diabetes mellitus" (NIDDM) or "adult-onset diabetes".[2] The most common cause is excessive body weight and insufficient exercise.[2]
Normally, blood glucose levels are tightly controlled by insulin, a hormone produced by the pancreas. Insulin lowers the blood glucose level. When the blood glucose elevates (for example, after eating food), insulin is released from the pancreas to normalize the glucose level by promoting the uptake of glucose into body cells. In patients with diabetes, the absence of insufficient production of or lack of response to insulin causes hyperglycemia. Diabetes is a chronic medical condition, meaning that although it can be controlled, it lasts a lifetime.
Doctors can also measure the level of a protein, hemoglobin A1C (also called glycosylated or glycolated hemoglobin), in the blood. Hemoglobin is the red, oxygen-carrying substance in red blood cells. When blood is exposed to high blood glucose levels over a period of time, glucose attaches to the hemoglobin and forms glycosylated hemoglobin. The hemoglobin A1C level (reported as the percentage of hemoglobin that is A1C) reflects long-term trends in blood glucose levels rather than rapid changes.
Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar. It is among the most common of chronic disorders, affecting up to 5–10% of the adult population of the Western world. The prevalence of diabetes is increasing dramatically; it has been estimated that the worldwide prevalence will increase by more than 50% between the years 2000 and 2030 (Wild et al., 2004). It is clearly established that diabetes mellitus is not a single disease, but a genetically heterogeneous group of disorders that share glucose intolerance in common. The concept of genetic heterogeneity (i.e. that different genetic and/or environmental etiologic factors can result in similar phenotypes) has significantly altered the genetic analysis of this common disorder.
Rates of diabetes in 1985 were estimated at 30 million, increasing to 135 million in 1995 and 217 million in 2005.[18] This increase is believed to be primarily due to the global population aging, a decrease in exercise, and increasing rates of obesity.[18] The five countries with the greatest number of people with diabetes as of 2000 are India having 31.7 million, China 20.8 million, the United States 17.7 million, Indonesia 8.4 million, and Japan 6.8 million.[109] It is recognized as a global epidemic by the World Health Organization.[1]

Jump up ^ Palmer, Suetonia C.; Mavridis, Dimitris; Nicolucci, Antonio; Johnson, David W.; Tonelli, Marcello; Craig, Jonathan C.; Maggo, Jasjot; Gray, Vanessa; De Berardis, Giorgia; Ruospo, Marinella; Natale, Patrizia; Saglimbene, Valeria; Badve, Sunil V.; Cho, Yeoungjee; Nadeau-Fredette, Annie-Claire; Burke, Michael; Faruque, Labib; Lloyd, Anita; Ahmad, Nasreen; Liu, Yuanchen; Tiv, Sophanny; Wiebe, Natasha; Strippoli, Giovanni F.M. (19 July 2016). "Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes". JAMA: the Journal of the American Medical Association. 316 (3): 313–24. doi:10.1001/jama.2016.9400. PMID 27434443.


Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) refer to levels of blood glucose concentration above the normal range, but below those which are diagnostic for diabetes. Subjects with IGT and/or IFG are at substantially higher risk of developing diabetes and cardiovascular disease than those with normal glucose tolerance. The benefits of clinical intervention in subjects with moderate glucose intolerance is a topic of much current interest.
It is a considerable challenge to obtain the goals of the intensively treated patients in the DCCT with the vast majority of people with diabetes given the more limited health care resources typically available in routine practice. If diabetes control can be improved without significant damage to quality of life, the economic, health, and quality of life savings associated with a reduction in complications in later life will be vast. Although some people who have had poorly controlled diabetes over many years do not develop complications, complications commonly arise after 15–20 years of diabetes and individuals in their 40s or even 30s may develop several complications in rapid succession. However, up until the early 1980s, patients had no way of monitoring their own blood glucose levels at home. Urine glucose monitoring only told them when their blood glucose had exceeded the renal threshold of approximately 10 mmol/L (i.e., was far too high), without being able to discriminate between the too high levels of 7–10 mmol/L or the hypoglycemic levels below 4 mmol/L. Clinics relied on random blood glucose testing and there were no measures of average blood glucose over a longer period. Since the 1980s there have been measures of glycosylated hemoglobin (GHb, HbA1, or HbA1c) which indicate average blood glucose over a six to eight week period and measures of glycosylated protein, fructosamine, which indicates average blood glucose over a two-week period. Blood-glucose meters for patients were first introduced in the early 1980s and the accuracy and convenience of the meters and the reagent strips they use has improved dramatically since early models. By the late 1990s blood-glucose monitoring is part of the daily routine for most people using insulin in developed countries. Blood-glucose monitoring is less often prescribed for tablet- and diet-alone-treated patients, financial reasons probably being allowed to outweigh the educational value of accurate feedback in improving control long term. The reduced risk of hypoglycemia and diabetic ketoacidosis in NIDDM patients not using insulin means that acute crises rarely arise in these patients though their risk of long-term complications is at least as great as in IDDM and might be expected to be reduced if feedback from blood-glucose monitoring were provided.

A healthy lifestyle can prevent almost all cases of type 2 diabetes. A large research study called the Diabetes Prevention Program, found that patients who made intensive changes including diet and exercise, reduced their risk of developing diabetes by 58%. Patients who were over 60 years old seemed to experience extra benefit; they reduced their risk by 71%. In comparison, patients who were given the drug metformin for prevention only reduced their risk by 31%.


When the glucose concentration in the blood remains high over time, the kidneys will reach a threshold of reabsorption, and glucose will be excreted in the urine (glycosuria).[62] This increases the osmotic pressure of the urine and inhibits reabsorption of water by the kidney, resulting in increased urine production (polyuria) and increased fluid loss. Lost blood volume will be replaced osmotically from water held in body cells and other body compartments, causing dehydration and increased thirst (polydipsia).[60]
Oral glucose tolerance test (OGTT): With this test you will be required to fast for at least 8 hours and then are given a drink with 75 g of carbohydrate. Your blood glucose is checked at fasting and then 2 hours after drinking the solution. If your blood glucose is 11.1 mmol/L or higher, your doctor may diagnose diabetes. If your blood glucose 2 hours after drinking the solution is between 7.8 to 11.1 mmol/L, your doctor may diagnose prediabetes. This is the preferred method to test for gestational diabetes.

Risk factors for type 2 diabetes include obesity, high cholesterol, high blood pressure, and physical inactivity. The risk of developing type 2 diabetes also increases as people grow older. People who are over 40 and overweight are more likely to develop type 2 diabetes, although the incidence of this type of diabetes in adolescents is growing. Diabetes is more common among Native Americans, African Americans, Hispanic Americans and Asian Americans/Pacific Islanders. Also, people who develop diabetes while pregnant (a condition called gestational diabetes) are more likely to develop type 2 diabetes later in life.
In the exchange system, foods are divided into six food groups (starch, meat, vegetable, fruit, milk, and fat) and the patient is taught to select items from each food group as ordered. Items in each group may be exchanged for each other in specified portions. The patient should avoid concentrated sweets and should increase fiber in the diet. Special dietetic foods are not necessary. Patient teaching should emphasize that a diabetic diet is a healthy diet that all members of the family can follow.
According to the Mayo Clinic, doctors may use other tests to diagnose diabetes. For example, they may conduct a fasting blood glucose test, which is a blood glucose test done after a night of fasting. While a fasting blood sugar level of less than 100 milligrams per deciliter (mg/dL) is normal, one that is between 100 to 125 mg/dL signals prediabetes, and a reading that reaches 126 mg/dL on two separate occasions means you have diabetes.
×