You may be able to manage your type 2 diabetes with healthy eating and being active, or your doctor may prescribe insulin, other injectable medications, or oral diabetes medicines to help control your blood sugar and avoid complications. You’ll still need to eat healthy and be active if you take insulin or other medicines. It’s also important to keep your blood pressure and cholesterol under control and get necessary screening tests.

Diabetes mellitus (“diabetes”) and hypertension, which commonly coexist, are global public health issues contributing to an enormous burden of cardiovascular disease, chronic kidney disease, and premature mortality and disability. The presence of both conditions has an amplifying effect on risk for microvascular and macrovascular complications.1 The prevalence of diabetes is rising worldwide (Fig. 37.1). Both diabetes and hypertension disproportionately affect people in middle and low-income countries, and an estimated 70% of all cases of diabetes are found in these countries.2,3 In the United States alone, the total costs of care for diabetes and hypertension in the years 2012 and 2011 were 245 and 46 billion dollars, respectively.4,5 Therefore, there is a great potential for meaningful health and economic gains attached to prevention, detection, and intervention for diabetes and hypertension.
Dr. Erica Oberg, ND, MPH, received a BA in anthropology from the University of Colorado, her doctorate of naturopathic medicine (ND) from Bastyr University, and a masters of public health (MPH) in health services research from the University of Washington. She completed her residency at the Bastyr Center for Natural Health in ambulatory primary care and fellowship training at the Health Promotion Research Center at the University of Washington.
Some patients with type 2 DM can control their disease with a calorically restricted diet (for instance 1600 to 1800 cal/day), regular aerobic exercise, and weight loss. Most patients, however, require the addition of some form of oral hypoglycemic drug or insulin. Oral agents to control DM include sulfonylurea drugs (such as glipizide), which increase pancreatic secretion of insulin; biguanides or thiazolidinediones (such as metformin or pioglitazone), which increase cellular sensitivity to insulin; or a-glucosidase inhibitors (such as acarbose), which decrease the absorption of carbohydrates from the gastrointestinal tract. Both types of diabetics also may be prescribed pramlintide (Symlin), a synthetic analog of human amylin, a hormone manufactured in the pancreatic beta cells. It enhances postprandial glucose control by slowing gastric emptying, decreasing postprandial glucagon concentrations, and regulating appetite and food intake; thus pramlintide is helpful for patients who do not achieve optimal glucose control with insulin and/or oral antidiabetic agents. When combinations of these agents fail to normalize blood glucose levels, insulin injections are added. Tight glucose control can reduce the patient’s risk of many of the complications of the disease. See: illustration
Some patients with type 2 DM can control their disease with a calorically restricted diet (for instance 1600 to 1800 cal/day), regular aerobic exercise, and weight loss. Most patients, however, require the addition of some form of oral hypoglycemic drug or insulin. Oral agents to control DM include sulfonylurea drugs (such as glipizide), which increase pancreatic secretion of insulin; biguanides or thiazolidinediones (such as metformin or pioglitazone), which increase cellular sensitivity to insulin; or a-glucosidase inhibitors (such as acarbose), which decrease the absorption of carbohydrates from the gastrointestinal tract. Both types of diabetics also may be prescribed pramlintide (Symlin), a synthetic analog of human amylin, a hormone manufactured in the pancreatic beta cells. It enhances postprandial glucose control by slowing gastric emptying, decreasing postprandial glucagon concentrations, and regulating appetite and food intake; thus pramlintide is helpful for patients who do not achieve optimal glucose control with insulin and/or oral antidiabetic agents. When combinations of these agents fail to normalize blood glucose levels, insulin injections are added. Tight glucose control can reduce the patient’s risk of many of the complications of the disease. See: illustration
The problem with sweetened drinks is that, due to their liquid form, they’re among the fastest simple carbs to be digested in the body, causing blood sugar levels to spike even more than a simple carb in solid-food form would. Research supports this idea: A review published in November 2010 in the journal Diabetes Care suggested adding only one serving of a sweetened beverage to your diet may increase your risk for type 2 diabetes by 15 percent.
Recently, battery-operated insulin pumps have been developed that can be programmed to mimic normal insulin secretion more closely. A person wearing an insulin pump still must monitor blood sugar several times a day and adjust the dosage, and not all diabetic patients are motivated or suited to such vigilance. It is hoped that in the future an implantable or external pump system may be perfected, containing a glucose sensor. In response to data from the sensor the pump will automatically deliver insulin according to changing levels of blood glucose.
People who are obese -- more than 20% over their ideal body weight for their height -- are at particularly high risk of developing type 2 diabetes and its related medical problems. Obese people have insulin resistance. With insulin resistance, the pancreas has to work overly hard to produce more insulin. But even then, there is not enough insulin to keep sugars normal.
Jump up ^ Seida, Jennifer C.; Mitri, Joanna; Colmers, Isabelle N.; Majumdar, Sumit R.; Davidson, Mayer B.; Edwards, Alun L.; Hanley, David A.; Pittas, Anastassios G.; Tjosvold, Lisa; Johnson, Jeffrey A. (Oct 2014). "Effect of Vitamin D3 Supplementation on Improving Glucose Homeostasis and Preventing Diabetes: A Systematic Review and Meta-Analysis". The Journal of Clinical Endocrinology & Metabolism. 99 (10): 3551–60. doi:10.1210/jc.2014-2136. PMC 4483466. PMID 25062463.
The elderly diabetic person is at increased risk of atrial fibrillation (odds ratio: 1.4 for men and 1.6 for women)232 and at twofold increased risk of thromboembolism from atrial fibrillation.233,234 We can find no subgroup analysis of the major atrial fibrillation trials to examine the benefits of warfarin specifically in older diabetic subjects. It appears that the adverse event rate in diabetic people drops from 8.6 events per 100 patients per year to 2.8 events with warfarin use.234 It is important to check for retinal new vessels when diabetic subjects are placed on warfarin, although the Early Treatment Diabetic Retinopathy Study235 showed no excess vitreous or preretinal hemorrhages in subjects given aspirin for vascular prophylaxis.
Type 2 diabetes is believed to have a strong genetic link, meaning that it tends to run in families. Several genes are being studied that may be related to the cause of type 2 diabetes. If you have any of the following type 2 diabetes risk factors, it’s important to ask your doctor about a diabetes test. With a proper diabetes diet and healthy lifestyle habits, along with diabetes medication, if necessary, you can manage type 2 diabetes just like you manage other areas of your life. Be sure to continue seeking the latest information on type 2 diabetes as you become your own health advocate.
Though not routinely used any longer, the oral glucose tolerance test (OGTT) is a gold standard for making the diagnosis of type 2 diabetes. It is still commonly used for diagnosing gestational diabetes and in conditions of pre-diabetes, such as polycystic ovary syndrome. With an oral glucose tolerance test, the person fasts overnight (at least eight but not more than 16 hours). Then first, the fasting plasma glucose is tested. After this test, the person receives an oral dose (75 grams) of glucose. There are several methods employed by obstetricians to do this test, but the one described here is standard. Usually, the glucose is in a sweet-tasting liquid that the person drinks. Blood samples are taken at specific intervals to measure the blood glucose.
Exposure to certain viral infections (mumps and Coxsackie viruses) or other environmental toxins may serve to trigger abnormal antibody responses that cause damage to the pancreas cells where insulin is made. Some of the antibodies seen in type 1 diabetes include anti-islet cell antibodies, anti-insulin antibodies and anti-glutamic decarboxylase antibodies. These antibodies can be detected in the majority of patients, and may help determine which individuals are at risk for developing type 1 diabetes.
The most common complication of treating high blood glucose levels is low blood glucose levels (hypoglycemia). The risk is greatest for older people who are frail, who are sick enough to require frequent hospital admissions, or who are taking several drugs. Of all available drugs to treat diabetes, long-acting sulfonylurea drugs are most likely to cause low blood glucose levels in older people. When they take these drugs, they are also more likely to have serious symptoms, such as fainting and falling, and to have difficulty thinking or using parts of the body due to low blood glucose levels.
Scientists have done studies of twins to help estimate how important genes are in determining one's risk of developing diabetes. Identical twins have identical genes and thus the same genetic risk for a disease. Research has found that if one identical twin has type 1 diabetes, the chance that the other twin will get the disease is roughly 40 or 50 percent. For type 2 diabetes, that risk goes up to about 80 or 90 percent. This might suggest that genes play a bigger role in type 2 than in type 1, but that isn't necessarily so. Type 2 is far more common in the general population than type 1, which means that regardless of genetics both twins are more likely to develop type 2 diabetes.

Blood travels throughout your body, and when too much glucose (sugar) is present, it disrupts the normal environment that the organ systems of your body function within. In turn, your body starts to exhibit signs that things are not working properly inside—those are the symptoms of diabetes people sometimes experience. If this problem—caused by a variety of factors—is left untreated, it can lead to a number of damaging complications such as heart attacks, strokes, blindness, kidney failure, and blood vessel disease that may require an amputation, nerve damage, and impotence in men.
If you have type 2 diabetes and your body mass index (BMI) is greater than 35, you may be a candidate for weight-loss surgery (bariatric surgery). Blood sugar levels return to normal in 55 to 95 percent of people with diabetes, depending on the procedure performed. Surgeries that bypass a portion of the small intestine have more of an effect on blood sugar levels than do other weight-loss surgeries.
What medication is available for diabetes? Diabetes causes blood sugar levels to rise. The body may stop producing insulin, the hormone that regulates blood sugar, and this results in type 1 diabetes. In people with type 2 diabetes, insulin is not working effectively. Learn about the range of treatments for each type and recent medical developments here. Read now
Diabetes mellitus is a serious metabolic disease, affecting people of all geographic, ethnic or racial origin and its prevalence is increasing globally1. Burden from this costly disease is high on the low and middle income countries (LMIC) where the impacts of modernization and urbanization have caused marked adverse changes in lifestyle parameters.
In type 2 diabetes (formerly called non– insulin-dependent diabetes or adult-onset diabetes), the pancreas often continues to produce insulin, sometimes even at higher-than-normal levels, especially early in the disease. However, the body develops resistance to the effects of insulin, so there is not enough insulin to meet the body’s needs. As type 2 diabetes progresses, the insulin-producing ability of the pancreas decreases.
10. Importance of keeping appointments and staying in touch with a health care provider for consultation and assessment. Periodic evaluation of the binding of glucose to hemoglobin (glycosylated hemoglobin or hemoglobin A1C testing) can give information about the effectiveness of the prescribed regimen and whether any changes need to be made. The ADA position statement on tests of glycemia in diabetes recommends routine testing for all patients with diabetes. It should be a part of the initial assessment of the patient, with subsequent measurements every three months to determine if the patient's metabolic control has been reached and maintained.

The American Diabetes Association sponsored an international panel in 1995 to review the literature and recommend updates of the classification of diabetes mellitus. The definitions and descriptions that follow are drawn from the Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. The report was first approved in 1997 and modified in 1999. Although other terms are found in older literature and remain in use, their use in current clinical practice is inappropriate. Epidemiologic and research studies are facilitated by use of a common language.
The American Diabetes Association sponsored an international panel in 1995 to review the literature and recommend updates of the classification of diabetes mellitus. The definitions and descriptions that follow are drawn from the Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. The report was first approved in 1997 and modified in 1999. Although other terms are found in older literature and remain in use, their use in current clinical practice is inappropriate. Epidemiologic and research studies are facilitated by use of a common language.
The good news is that if you have diabetes, you have a great amount of control in managing your disease. Although it can be difficult to manage a disease on a daily basis, the resources and support for people with diabetes is endless. It's important for you to receive as much education as possible so that you can take advantage of all the good information that is out there (and weed out the bad).

If you find that you are a little rusty and could use a refresher course in nutrition or anything else related to diabetes, consider signing up for a diabetes conversation map class. These classes are a good way to re-learn key components of diabetes in a group setting. If you have adequate knowledge and are instead looking for ways to make your life easier, check out some apps, nutrition resources, or fitness trackers that can help you stay moving and cook healthy meals. Keeping up the good work is worth it, as it can help prevent complications.
a complex disorder of carbohydrate, fat, and protein metabolism that is primarily a result of a deficiency or complete lack of insulin secretion by the beta cells of the pancreas or resistance to insulin. The disease is often familial but may be acquired, as in Cushing's syndrome, as a result of the administration of excessive glucocorticoid. The various forms of diabetes have been organized into categories developed by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus of the American Diabetes Association. Type 1 diabetes mellitus in this classification scheme includes patients with diabetes caused by an autoimmune process, dependent on insulin to prevent ketosis. This group was previously called type I, insulin-dependent diabetes mellitus, juvenile-onset diabetes, brittle diabetes, or ketosis-prone diabetes. Patients with type 2 diabetes mellitus are those previously designated as having type II, non-insulin-dependent diabetes mellitus, maturity-onset diabetes, adult-onset diabetes, ketosis-resistant diabetes, or stable diabetes. Those with gestational diabetes mellitus are women in whom glucose intolerance develops during pregnancy. Other types of diabetes are associated with a pancreatic disease, hormonal changes, adverse effects of drugs, or genetic or other anomalies. A fourth subclass, the impaired glucose tolerance group, also called prediabetes, includes persons whose blood glucose levels are abnormal although not sufficiently above the normal range to be diagnosed as having diabetes. Approximately 95% of the 18 million diabetes patients in the United States are classified as type 2, and more than 70% of those patients are obese. About 1.3 million new cases of diabetes mellitus are diagnosed in the United States each year. Contributing factors to the development of diabetes are heredity; obesity; sedentary life-style; high-fat, low-fiber diets; hypertension; and aging. See also impaired glucose tolerance, potential abnormality of glucose tolerance, previous abnormality of glucose tolerance.
Gestational diabetes mellitus (GDM) resembles type 2 DM in several respects, involving a combination of relatively inadequate insulin secretion and responsiveness. It occurs in about 2–10% of all pregnancies and may improve or disappear after delivery.[50] However, after pregnancy approximately 5–10% of women with GDM are found to have DM, most commonly type 2.[50] GDM is fully treatable, but requires careful medical supervision throughout the pregnancy. Management may include dietary changes, blood glucose monitoring, and in some cases, insulin may be required.

Type 2 diabetes, the most common type of diabetes, is a disease that occurs when your blood glucose, also called blood sugar, is too high. Blood glucose is your main source of energy and comes mainly from the food you eat. Insulin, a hormone made by the pancreas, helps glucose get into your cells to be used for energy. In type 2 diabetes, your body doesn’t make enough insulin or doesn’t use insulin well. Too much glucose then stays in your blood, and not enough reaches your cells.


Type I diabetes, sometimes called juvenile diabetes, begins most commonly in childhood or adolescence. In this form of diabetes, the body produces little or no insulin. It is characterized by a sudden onset and occurs more frequently in populations descended from Northern European countries (Finland, Scotland, Scandinavia) than in those from Southern European countries, the Middle East, or Asia. In the United States, approximately three people in 1,000 develop Type I diabetes. This form also is called insulin-dependent diabetes because people who develop this type need to have daily injections of insulin.
The relationship between type 2 diabetes and the main modifiable risk factors (excess weight, unhealthy diet, physical inactivity and tobacco use) is similar in all regions of the world. There is growing evidence that the underlying determinants of diabetes are a reflection of the major forces driving social, economic and cultural change: globalization, urbanization, population aging, and the general health policy environment.[74]
A chronic metabolic disorder in which the use of carbohydrate is impaired and that of lipid and protein is enhanced. It is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma. Long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection.
Being overweight is a risk factor for developing diabetes, but other risk factors such as how much physical activity you get, family history, ethnicity, and age also play a role. Unfortunately, many people think that weight is the only risk factor for type 2 diabetes, but many people with type 2 diabetes are at a normal weight or only moderately overweight.
Glucose is a simple sugar found in food. Glucose is an essential nutrient that provides energy for the proper functioning of the body cells. Carbohydrates are broken down in the small intestine and the glucose in digested food is then absorbed by the intestinal cells into the bloodstream, and is carried by the bloodstream to all the cells in the body where it is utilized. However, glucose cannot enter the cells alone and needs insulin to aid in its transport into the cells. Without insulin, the cells become starved of glucose energy despite the presence of abundant glucose in the bloodstream. In certain types of diabetes, the cells' inability to utilize glucose gives rise to the ironic situation of "starvation in the midst of plenty". The abundant, unutilized glucose is wastefully excreted in the urine.
What is hypoglycemia? A blood sugar level of under 70 mg/dl (3.9 mmol/l) is typically considered hypoglycemia (low blood sugar), and can result in irritability, confusion, seizures, and even unconsciousness for extreme lows. To correct hypoglycemia, patients commonly use fast-acting carbohydrates. In extreme cases of severe hypoglycemia, a glucagon injection pen can be used. According to the Mayo Clinic, symptoms of hypoglycemia are:
Persons with diabetes are prone to infection, delayed healing, and vascular disease. The ease with which poorly controlled diabetic persons develop an infection is thought to be due in part to decreased chemotaxis of leukocytes, abnormal phagocyte function, and diminished blood supply because of atherosclerotic changes in the blood vessels. An impaired blood supply means a deficit in the protective defensive cells transported in the blood. Excessive glucose allows organisms to grow out of control.

A chronic metabolic disorder marked by hyperglycemia. DM results either from failure of the pancreas to produce insulin (type 1 DM) or from insulin resistance, with inadequate insulin secretion to sustain normal metabolism (type 2 DM). Either type of DM may damage blood vessels, nerves, kidneys, the retina, and the developing fetus and the placenta during pregnancy. Type 1 or insulin-dependent DM has a prevalence of just 0.3 to 0.4%. Type 2 DM (formerly called adult-onset DM) has a prevalence in the general population of 6.6%. In some populations (such as older persons, Native Americans, African Americans, Pacific Islanders, Mexican Americans), it is present in nearly 20% of adults. Type 2 DM primarily affects obese middle-aged people with sedentary lifestyles, whereas type 1 DM usually occurs in children, most of whom are active and thin, although extremely obese children are now being diagnosed with type 2 diabetes as well. See: table; dawn phenomenon; insulin; insulin pump; insulin resistance; diabetic polyneuropathy; Somogyi phenomenon

Findings from the Diabetes Control and Complications Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have clearly shown that aggressive and intensive control of elevated levels of blood sugar in patients with type 1 and type 2 diabetes decreases the complications of nephropathy, neuropathy, retinopathy, and may reduce the occurrence and severity of large blood vessel diseases. Aggressive control with intensive therapy means achieving fasting glucose levels between 70-120 mg/dl; glucose levels of less than 160 mg/dl after meals; and a near normal hemoglobin A1c levels (see below).
If genetics has taught us anything about diabetes, it's that, for most people, genes aren't the whole story. True, a few rare kinds of diabetes—including those collectively called MODY for maturity-onset diabetes of the young—have been traced to defects in a single gene. But for other types of diabetes, hereditary factors are still not well understood.
[1] Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. The Lancet Diabetes & Endocrinology. 2015;3(11):866‒875. You can find more information about this study on the Diabetes Prevention Program Outcomes Study website.
WELL-CONTROLLED DIABETES MELLITUS: Daily blood sugar abstracted from the records of a patient whose DM is well controlled (hemoglobin A1c=6.4). The average capillary blood glucose level is 104 mg/dL, and the standard deviation is 19. Sixty-five percent of the readings are between 90 and 140 mg/dL; the lowest blood sugar is 67 mg/dL (on April 15) and the highest is about 190 (on March 21).

The American Diabetes Association sponsored an international panel in 1995 to review the literature and recommend updates of the classification of diabetes mellitus. The definitions and descriptions that follow are drawn from the Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. The report was first approved in 1997 and modified in 1999. Although other terms are found in older literature and remain in use, their use in current clinical practice is inappropriate. Epidemiologic and research studies are facilitated by use of a common language.


We use cookies and similar technologies to improve your browsing experience, personalize content and offers, show targeted ads, analyze traffic, and better understand you. We may share your information with third-party partners for marketing purposes. To learn more and make choices about data use, visit our Advertising Policy and Privacy Policy. By clicking “Accept and Continue” below, (1) you consent to these activities unless and until you withdraw your consent using our rights request form, and (2) you consent to allow your data to be transferred, processed, and stored in the United States.
×