You can develop type 2 diabetes at any age, even during childhood. However, type 2 diabetes occurs most often in middle-aged and older people. You are more likely to develop type 2 diabetes if you are age 45 or older, have a family history of diabetes, or are overweight or obese. Diabetes is more common in people who are African American, Hispanic/Latino, American Indian, Asian American, or Pacific Islander.
Retinopathy: If blood sugar levels are too high, they can damage the eyes and cause vision loss and blindness. Retinopathy causes the development and leaking of new blood vessels behind the eye. Other effects of diabetes, such as high blood pressure and high cholesterol, can make this worse. According to the CDC, early treatment can prevent or reduce the risk of blindness in an estimated 90 percent of people with diabetes.
One of the key factors in Joslin’s treatment of diabetes is tight blood glucose control, so be certain that your treatment helps get your blood glucose readings as close to normal as safely possible. Patients should discuss with their doctors what their target blood glucose range is. It is also important to determine what your goal is for A1C readings (a test that determines how well your diabetes is controlled over the past 2-3 months). By maintaining blood glucose in the desired range, you’ll likely avoid many of the complications some people with diabetes face.
Then, once you do have an injury, uncontrolled diabetes can make it harder for your body to heal. “High blood sugars provide a good environment for bacteria to grow,” she says. That's because diabetes is also often accompanied by high blood pressure and high cholesterol, and the resulting plaque buildup can narrow blood vessels, reducing blood supply and leading to slow healing.
Although age of onset and length of the disease process are related to the frequency with which vascular, renal, and neurologic complications develop, there are some patients who remain relatively free of sequelae even into the later years of their lives. Because diabetes mellitus is not a single disease but rather a complex constellation of syndromes, each patient has a unique response to the disease process.
Although there are dozens of known type 1 genes, about half of the risk attributable to heredity comes from a handful that coordinate a part of the immune system called HLA, which helps the body recognize nefarious foreign invaders, such as viruses, bacteria, and parasites. Type 1 diabetes is an autoimmune disease, in which the body's own immune system destroys the cells in the pancreas that produce insulin, so perhaps it is no surprise that immunity genes are involved. Other autoimmune diseases share the HLA gene link, which may be why people with type 1 are more likely to develop additional auto­immune disorders.

1. Monitoring of blood glucose status. In the past, urine testing was an integral part of the management of diabetes, but it has largely been replaced in recent years by self monitoring of blood glucose. Reasons for this are that blood testing is more accurate, glucose in the urine shows up only after the blood sugar level is high, and individual renal thresholds vary greatly and can change when certain medications are taken. As a person grows older and the kidney is less able to eliminate sugar in the urine, the renal threshold rises and less sugar is spilled into the urine. The position statement of the American Diabetes Association on Tests of Glycemia in Diabetes notes that urine testing still plays a role in monitoring in type 1 and gestational diabetes, and in pregnancy with pre-existing diabetes, as a way to test for ketones. All people with diabetes should test for ketones during times of acute illness or stress and when blood glucose levels are consistently elevated.
Doctors and people with diabetes have observed that infections seem more common if you have diabetes. Research in this area, however, has not proved whether this is entirely true, nor why. It may be that high levels of blood sugar impair your body's natural healing process and your ability to fight infections. For women, bladder and vaginal infections are especially common.
How to use basal insulin: Benefits, types, and dosage Basal, or background, insulin helps regulate blood sugar levels in people diagnosed with diabetes. It keeps glucose levels steady throughout the day and night. It is taken as injections, once a day or more often. The type of insulin and number of daily injections varies. Find out more about the options available. Read now
People with diabetes aim for a hemoglobin A1C level of less than 7%. Achieving this level is difficult, but the lower the hemoglobin A1C level, the less likely people are to have complications. Doctors may recommend a slightly higher or lower target for certain people depending on their particular health situation. However, levels above 9% show poor control, and levels above 12% show very poor control. Most doctors who specialize in diabetes care recommend that hemoglobin A1C be measured every 3 to 6 months.
Originally described in approximately 30% of patients with type 1 diabetes mellitus, limited joint mobility occurs in 50% of patients older than age 10 years who have had diabetes for longer than 5 years. The condition restricts joint extension, making it difficult to press the hands flat against each other. The skin of patients with severe joint involvement has a thickened and waxy appearance.
Poor vision, limited manual dexterity due to arthritis, tremor, or stroke, or other physical limitations may make monitoring blood glucose levels more difficult for older people. However, special monitors are available. Some have large numerical displays that are easier to read. Some provide audible instructions and results. Some monitors read blood glucose levels through the skin and do not require a blood sample. People can consult a diabetes educator to determine which meter is most appropriate.

Pay attention if you find yourself feeling drowsy or lethargic; pain or numbness in your extremities; vision changes; fruity or sweet-smelling breath which is one of the symptoms of high ketones; and experiencing nausea or vomiting—as these are additional signs that something is not right. If there’s any question, see your doctor immediately to ensure that your blood sugar levels are safe and rule out diabetes.

There is strong evidence that the long-term complications are related to the degree and duration of metabolic disturbances.2 These considerations form the basis of standard and innovative therapeutic approaches to this disease that include newer pharmacologic formulations of insulin, delivery by traditional and more physiologic means, and evolving methods to continuously monitor blood glucose to maintain it within desired limits by linking these features to algorithm-driven insulin delivery pumps for an “artificial pancreas.”
Type 1 diabetes is partly inherited, with multiple genes, including certain HLA genotypes, known to influence the risk of diabetes. In genetically susceptible people, the onset of diabetes can be triggered by one or more environmental factors,[41] such as a viral infection or diet. Several viruses have been implicated, but to date there is no stringent evidence to support this hypothesis in humans.[41][42] Among dietary factors, data suggest that gliadin (a protein present in gluten) may play a role in the development of type 1 diabetes, but the mechanism is not fully understood.[43][44]
It is also important to note that currently one third of those who have IGT are in the productive age between 20-39 yr and, therefore, are likely to spend many years at high risk of developing diabetes and/or complications of diabetes1. Some persons with prediabetes experience reactive hypoglycaemia 2-3 hours after a meal. This is a sign of impaired insulin metabolism indicative of impending occurrence of diabetes. Therefore, periodic medical check-up in people with such signs or risk factors for diabetes would reduce the hazards involved in having undiagnosed diabetes. It would help improve the health status of a large number of people who otherwise would be silent sufferers from the metabolic aberrations associated with diabetes.

Diabetes is a disease in which your blood glucose, or blood sugar, levels are too high. Glucose comes from the foods you eat. Insulin is a hormone that helps the glucose get into your cells to give them energy. With type 1 diabetes, your body does not make insulin. With type 2 diabetes, the more common type, your body does not make or use insulin well. Without enough insulin, the glucose stays in your blood.
Jump up ^ Santaguida PL, Balion C, Hunt D, Morrison K, Gerstein H, Raina P, Booker L, Yazdi H. "Diagnosis, Prognosis, and Treatment of Impaired Glucose Tolerance and Impaired Fasting Glucose". Summary of Evidence Report/Technology Assessment, No. 128. Agency for Healthcare Research and Quality. Archived from the original on 16 September 2008. Retrieved 20 July 2008.
Managing your blood glucose, blood pressure, and cholesterol, and quitting smoking if you smoke, are important ways to manage your type 2 diabetes. Lifestyle changes that include planning healthy meals, limiting calories if you are overweight, and being physically active are also part of managing your diabetes. So is taking any prescribed medicines. Work with your health care team to create a diabetes care plan that works for you.

Your body is like a car—it needs fuel to function. Its primary source of fuel is glucose (sugar), which is gained from foods that contain carbohydrates that get broken down. Insulin, a hormone produced by the pancreas, takes sugar from your blood to your cells to use for energy. However, when you have diabetes, either your pancreas isn't making enough insulin or the insulin that your body is making isn't being used the way it's supposed to be, typically because the cells become resistant to it.

Polyuria is defined as an increase in the frequency of urination. When you have abnormally high levels of sugar in your blood, your kidneys draw in water from your tissues to dilute that sugar, so that your body can get rid of it through the urine. The cells are also pumping water into the bloodstream to help flush out sugar, and the kidneys are unable to reabsorb this fluid during filtering, which results in excess urination.
Insulin is a hormone that is produced by specialized cells (beta cells) of the pancreas. (The pancreas is a deep-seated organ in the abdomen located behind the stomach.) In addition to helping glucose enter the cells, insulin is also important in tightly regulating the level of glucose in the blood. After a meal, the blood glucose level rises. In response to the increased glucose level, the pancreas normally releases more insulin into the bloodstream to help glucose enter the cells and lower blood glucose levels after a meal. When the blood glucose levels are lowered, the insulin release from the pancreas is turned down. It is important to note that even in the fasting state there is a low steady release of insulin than fluctuates a bit and helps to maintain a steady blood sugar level during fasting. In normal individuals, such a regulatory system helps to keep blood glucose levels in a tightly controlled range. As outlined above, in patients with diabetes, the insulin is either absent, relatively insufficient for the body's needs, or not used properly by the body. All of these factors cause elevated levels of blood glucose (hyperglycemia).
central diabetes insipidus a metabolic disorder due to injury of the neurohypophyseal system, which results in a deficient quantity of antidiuretic hormone (ADH or vasopressin) being released or produced, resulting in failure of tubular reabsorption of water in the kidney. As a consequence, there is the passage of a large amount of urine having a low specific gravity, and great thirst; it is often attended by voracious appetite, loss of strength, and emaciation. Diabetes insipidus may be acquired through infection, neoplasm, trauma, or radiation injuries to the posterior lobe of the pituitary gland or it may be inherited or idiopathic.
Despite our efforts, patients are still likely to suffer myocardial infarction. The Diabetes mellitus, Insulin Glucose infusion in Acute Myocardial Infarction (DIGAMI) study236,237 reported on treating subjects with acute myocardial infarction and either diabetes or raised random plasma glucose (i.e., not necessarily diabetic) with either an intensive insulin infusion and then a four-times daily insulin regimen or conventional treatment. Over a mean follow-up of 3.4 years, there was a 33% death rate in the treatment group compared with a 44% death rate in the control group, an absolute reduction in mortality of 11%. The effect was greatest among the subgroup without previous insulin treatment and at a low cardiovascular risk. Evidence is continuing to accumulate that the diabetic person should have a glucose/insulin infusion after a myocardial infarction.
The earliest surviving work with a detailed reference to diabetes is that of Aretaeus of Cappadocia (2nd or early 3rd century CE). He described the symptoms and the course of the disease, which he attributed to the moisture and coldness, reflecting the beliefs of the "Pneumatic School". He hypothesized a correlation of diabetes with other diseases, and he discussed differential diagnosis from the snakebite which also provokes excessive thirst. His work remained unknown in the West until 1552, when the first Latin edition was published in Venice.[110]
This content is provided as a service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health. The NIDDK translates and disseminates research findings through its clearinghouses and education programs to increase knowledge and understanding about health and disease among patients, health professionals, and the public. Content produced by the NIDDK is carefully reviewed by NIDDK scientists and other experts.
As of 2015, an estimated 415 million people had diabetes worldwide,[8] with type 2 DM making up about 90% of the cases.[16][17] This represents 8.3% of the adult population,[17] with equal rates in both women and men.[18] As of 2014, trends suggested the rate would continue to rise.[19] Diabetes at least doubles a person's risk of early death.[2] From 2012 to 2015, approximately 1.5 to 5.0 million deaths each year resulted from diabetes.[8][9] The global economic cost of diabetes in 2014 was estimated to be US$612 billion.[20] In the United States, diabetes cost $245 billion in 2012.[21]
Getting diagnosed with diabetes can be shocking, but the good news is that, although it is a disease you must deal with daily, it is a manageable one. If you are experiencing any of the above symptoms, especially if you are someone who is at high risk, you should meet with your primary care physician to get tested. The earlier a diagnosis is made, the more likely you can get your diabetes under control and prevent complications.
Doctors and people with diabetes have observed that infections seem more common if you have diabetes. Research in this area, however, has not proved whether this is entirely true, nor why. It may be that high levels of blood sugar impair your body's natural healing process and your ability to fight infections. For women, bladder and vaginal infections are especially common.

Although many of the symptoms of type 1 and type 2 diabetes are similar, they present in very different ways. Many people with type 2 diabetes won’t have symptoms for many years. Then often the symptoms of type 2 diabetes develop slowly over the course of time. Some people with type 2 diabetes have no symptoms at all and don’t discover their condition until complications develop.
If you’re getting a good night’s rest but still find yourself so tired you can barely function, it’s definitely worth mentioning to your doctor. Diabetes often wreaks havoc on a person’s normal blood sugar levels, causing fatigue in the process. In later stages, the tissue death associated with untreated diabetes can also limit circulation, meaning oxygenated blood isn’t being effectively transported to your vital organs, making your body work harder and tiring you out along the way.
Hyperglycemia (ie, random blood glucose concentration of more than 200 mg/dL or 11 mmol/L) results when insulin deficiency leads to uninhibited gluconeogenesis and prevents the use and storage of circulating glucose. The kidneys cannot reabsorb the excess glucose load, causing glycosuria, osmotic diuresis, thirst, and dehydration. Increased fat and protein breakdown leads to ketone production and weight loss. Without insulin, a child with type 1 diabetes mellitus wastes away and eventually dies due to DKA. The effects of insulin deficiency are shown in the image below.
[1] Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. The Lancet Diabetes & Endocrinology. 2015;3(11):866‒875. You can find more information about this study on the Diabetes Prevention Program Outcomes Study website.
^ Jump up to: a b Picot J, Jones J, Colquitt JL, Gospodarevskaya E, Loveman E, Baxter L, Clegg AJ (September 2009). "The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation". Health Technology Assessment. 13 (41): 1–190, 215–357, iii–iv. doi:10.3310/hta13410. PMID 19726018.
Creatinine is a chemical waste molecule that is generated from muscle metabolism. Creatinine is produced from creatine, a molecule of major importance for energy production in muscles. Creatinine has been found to be a fairly reliable indicator of kidney function. As the kidneys become impaired the creatinine level in the blood will rise. Normal levels of creatinine in the blood vary from gender and age of the individual.

The classic symptoms of diabetes such as polyuria, polydypsia and polyphagia occur commonly in type 1 diabetes, which has a rapid development of severe hyperglycaemia and also in type 2 diabetes with very high levels of hyperglycaemia. Severe weight loss is common only in type 1 diabetes or if type 2 diabetes remains undetected for a long period. Unexplained weight loss, fatigue and restlessness and body pain are also common signs of undetected diabetes. Symptoms that are mild or have gradual development could also remain unnoticed.
Excessive thirst typically goes hand-in-hand with increased urination. As your body pulls water out of the tissues to dilute your blood and to rid your body of sugar through the urine, the urge to drink increases. Many people describe this thirst as an unquenchable one. To stay hydrated, you drink excessive amounts of liquids. And if those liquids contain simple sugars (soda, sweet iced tea, lemonade, or juice, for example) your sugars will skyrocket even higher.
Diabetes Forum App Find support, ask questions and share your experiences with 281,823 members of the diabetes community. Recipe App Delicious diabetes recipes, updated every Monday. Filter recipes by carbs, calories and time to cook. Low Carb Program Join 250,000 people on the award-winning education program for people with type 2 diabetes, prediabetes and obesity. Hypo Awareness Program The first comprehensive, free and open to all online step-by-step guide to improving hypo awareness. DiabetesPA Your diabetes personal assistant. Monitor every aspect of your diabetes. Simple, practical, free.
5. Signs and symptoms ofhyperglycemiaandhypoglycemia, and measures to take when they occur. (See accompanying table.) It is important for patients to become familiar with specific signs that are unique to themselves. Each person responds differently and may exhibit symptoms different from those experienced by others. It should be noted that the signs and symptoms may vary even within one individual. Thus it is vital that the person understand all reactions that could occur. When there is doubt, a simple blood glucose reading will determine the actions that should be taken.
In the exchange system, foods are divided into six food groups (starch, meat, vegetable, fruit, milk, and fat) and the patient is taught to select items from each food group as ordered. Items in each group may be exchanged for each other in specified portions. The patient should avoid concentrated sweets and should increase fiber in the diet. Special dietetic foods are not necessary. Patient teaching should emphasize that a diabetic diet is a healthy diet that all members of the family can follow.

Though not routinely used any longer, the oral glucose tolerance test (OGTT) is a gold standard for making the diagnosis of type 2 diabetes. It is still commonly used for diagnosing gestational diabetes and in conditions of pre-diabetes, such as polycystic ovary syndrome. With an oral glucose tolerance test, the person fasts overnight (at least eight but not more than 16 hours). Then first, the fasting plasma glucose is tested. After this test, the person receives an oral dose (75 grams) of glucose. There are several methods employed by obstetricians to do this test, but the one described here is standard. Usually, the glucose is in a sweet-tasting liquid that the person drinks. Blood samples are taken at specific intervals to measure the blood glucose.

Studies show that good control of blood sugar levels decreases the risk of complications from diabetes.  Patients with better control of blood sugar have reduced rates of diabetic eye disease, kidney disease, and nerve disease. It is important for patients to measure their measuring blood glucose levels. Hemoglobin A1c can also be measured with a blood test and gives information about average blood glucose over the past 3 months. 

Low glycemic index foods also may be helpful. The glycemic index is a measure of how quickly a food causes a rise in your blood sugar. Foods with a high glycemic index raise your blood sugar quickly. Low glycemic index foods may help you achieve a more stable blood sugar. Foods with a low glycemic index typically are foods that are higher in fiber.
Diabetes insipidus is characterized by excessive urination and thirst, as well as a general feeling of weakness. While these can also be symptoms of diabetes mellitus, if you have diabetes insipidus your blood sugar levels will be normal and no sugar present in your urine. Diabetes insipidus is a problem of fluid balance caused by a problem with the kidneys, where they can't stop the excretion of water. Polyuria (excessive urine) and polydipsia (excessive thirst) occur in diabetes mellitus as a reaction to high blood sugar.
Jump up ^ Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, Seshasai SR, McMurray JJ, Freeman DJ, Jukema JW, Macfarlane PW, Packard CJ, Stott DJ, Westendorp RG, Shepherd J, Davis BR, Pressel SL, Marchioli R, Marfisi RM, Maggioni AP, Tavazzi L, Tognoni G, Kjekshus J, Pedersen TR, Cook TJ, Gotto AM, Clearfield MB, Downs JR, Nakamura H, Ohashi Y, Mizuno K, Ray KK, Ford I (February 2010). "Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials". Lancet. 375 (9716): 735–42. doi:10.1016/S0140-6736(09)61965-6. PMID 20167359.
2. Home glucose monitoring using either a visually read test or a digital readout of the glucose concentration in a drop of blood. Patients can usually learn to use the necessary equipment and perform finger sticks. They keep a daily record of findings and are taught to adjust insulin dosage accordingly. More recent glucose monitoring devices can draw blood from other locations on the body, such as the forearm.

The diabetic patient should learn to recognize symptoms of low blood sugar (such as confusion, sweats, and palpitations) and high blood sugar (such as, polyuria and polydipsia). When either condition results in hospitalization, vital signs, weight, fluid intake, urine output, and caloric intake are accurately documented. Serum glucose and urine ketone levels are evaluated. Chronic management of DM is also based on periodic measurement of glycosylated hemoglobin levels (HbA1c). Elevated levels of HbA1c suggest poor long-term glucose control. The effects of diabetes on other body systems (such as cerebrovascular, coronary artery, and peripheral vascular) should be regularly assessed. Patients should be evaluated regularly for retinal disease and visual impairment and peripheral and autonomic nervous system abnormalities, e.g., loss of sensation in the feet. The patient is observed for signs and symptoms of diabetic neuropathy, e.g., numbness or pain in the hands and feet, decreased vibratory sense, footdrop, and neurogenic bladder. The urine is checked for microalbumin or overt protein losses, an early indication of nephropathy. The combination of peripheral neuropathy and peripheral arterial disease results in changes in the skin and microvasculature that lead to ulcer formation on the feet and lower legs with poor healing. Approx. 45,000 lower-extremity diabetic amputations are performed in the U.S. each year. Many amputees have a second amputation within five years. Most of these amputations are preventable with regular foot care and examinations. Diabetic patients and their providers should look for changes in sensation to touch and vibration, the integrity of pulses, capillary refill, and the skin. All injuries, cuts, and blisters should be treated promptly. The patient should avoid constricting hose, slippers, shoes, and bed linens or walking barefoot. The patient with ulcerated or insensitive feet is referred to a podiatrist for continuing foot care and is warned that decreased sensation can mask injuries.

Intensive blood sugar lowering (HbA1c<6%) as opposed to standard blood sugar lowering (HbA1c of 7–7.9%) does not appear to change mortality.[74][75] The goal of treatment is typically an HbA1c of 7 to 8% or a fasting glucose of less than 7.2 mmol/L (130 mg/dl); however these goals may be changed after professional clinical consultation, taking into account particular risks of hypoglycemia and life expectancy.[59][76][77] Despite guidelines recommending that intensive blood sugar control be based on balancing immediate harms with long-term benefits, many people – for example people with a life expectancy of less than nine years who will not benefit, are over-treated.[78]

Diabetes mellitus (“diabetes”) and hypertension, which commonly coexist, are global public health issues contributing to an enormous burden of cardiovascular disease, chronic kidney disease, and premature mortality and disability. The presence of both conditions has an amplifying effect on risk for microvascular and macrovascular complications.1 The prevalence of diabetes is rising worldwide (Fig. 37.1). Both diabetes and hypertension disproportionately affect people in middle and low-income countries, and an estimated 70% of all cases of diabetes are found in these countries.2,3 In the United States alone, the total costs of care for diabetes and hypertension in the years 2012 and 2011 were 245 and 46 billion dollars, respectively.4,5 Therefore, there is a great potential for meaningful health and economic gains attached to prevention, detection, and intervention for diabetes and hypertension.

The levels of glucose in the blood vary normally throughout the day. They rise after a meal and return to pre-meal levels within about 2 hours after eating. Once the levels of glucose in the blood return to premeal levels, insulin production decreases. The variation in blood glucose levels is usually within a narrow range, about 70 to 110 milligrams per deciliter (mg/dL) of blood in healthy people. If people eat a large amount of carbohydrates, the levels may increase more. People older than 65 years tend to have slightly higher levels, especially after eating.
People with type 2 diabetes have insulin resistance, which means the body cannot use insulin properly to help glucose get into the cells. In people with type 2 diabetes, insulin doesn’t work well in muscle, fat, and other tissues, so your pancreas (the organ that makes insulin) starts to put out a lot more of it to try and compensate. "This results in high insulin levels in the body,” says Fernando Ovalle, MD, director of the multidisciplinary diabetes clinic at the University of Alabama in Birmingham. This insulin level sends signals to the brain that your body is hungry.