Diabetes mellitus (“diabetes”) and hypertension, which commonly coexist, are global public health issues contributing to an enormous burden of cardiovascular disease, chronic kidney disease, and premature mortality and disability. The presence of both conditions has an amplifying effect on risk for microvascular and macrovascular complications.1 The prevalence of diabetes is rising worldwide (Fig. 37.1). Both diabetes and hypertension disproportionately affect people in middle and low-income countries, and an estimated 70% of all cases of diabetes are found in these countries.2,3 In the United States alone, the total costs of care for diabetes and hypertension in the years 2012 and 2011 were 245 and 46 billion dollars, respectively.4,5 Therefore, there is a great potential for meaningful health and economic gains attached to prevention, detection, and intervention for diabetes and hypertension.
The blood vessels and blood are the highways that transport sugar from where it is either taken in (the stomach) or manufactured (in the liver) to the cells where it is used (muscles) or where it is stored (fat). Sugar cannot go into the cells by itself. The pancreas releases insulin into the blood, which serves as the helper, or the "key," that lets sugar into the cells for use as energy.
Hemoglobin A1c or HbA1c is a protein on the surface of red blood cells. The HbA1c test is used to monitor blood sugar levels in people with type 1 and type 2 diabetes over time. Normal HbA1c levels are 6% or less. HbA1c levels can be affected by insulin use, fasting, glucose intake (oral or IV), or a combination of these and other factors. High hemoglobin A1c levels in the blood increases the risk of microvascular complications, for example, diabetic neuropathy, eye, and kidney disease.
Exercise. A program of regular exercise gives anyone a sense of good health and well-being; for persons with diabetes it gives added benefits by helping to control blood glucose levels, promoting circulation to peripheral tissues, and strengthening the heart beat. In addition, there is evidence that exercise increases the number of insulin receptor sites on the surface of cells and thus facilitates the metabolism of glucose. Many specialists in diabetes consider exercise so important in the management of diabetes that they prescribe rather than suggest exercise.
ORAL GLUCOSE TOLERANCE TEST. Blood samples are taken from a vein before and after a patient drinks a thick, sweet syrup of glucose and other sugars. In a non-diabetic, the level of glucose in the blood goes up immediately after the drink and then decreases gradually as insulin is used by the body to metabolize, or absorb, the sugar. In a diabetic, the glucose in the blood goes up and stays high after drinking the sweetened liquid. A plasma glucose level of 11.1 mmol/L (200 mg/dL) or higher at two hours after drinking the syrup and at one other point during the two-hour test period confirms the diagnosis of diabetes.

Another area of pathologic changes associated with diabetes mellitus is the nervous system (diabetic neuropathy), particularly in the peripheral nerves of the lower extremities. The patient typically experiences a “stocking-type” anesthesia beginning about 10 years after the onset of the disease. There may eventually be almost total anesthesia of the affected part with the potential for serious injury to the part without the patient being aware of it. In contrast, some patients experience debilitating pain and hyperesthesia, with loss of deep tendon reflexes.
Individuals with diabetes have two times the likelihood of getting a urinary tract infection compared to individuals without the disease. If you find yourself getting up every couple of hours in the middle of the night, and you seem to be expelling a lot more urine than you used to, talk to your doctor and find out whether or not you have diabetes.

People usually develop type 2 diabetes after the age of 40 years, although people of South Asian origin are at an increased risk of the condition and may develop diabetes from the age of 25 onwards. The condition is also becoming increasingly common among children and adolescents across all populations. Type 2 diabetes often develops as a result of overweight, obesity and lack of physical activity and diabetes prevalence is on the rise worldwide as these problems become more widespread.
The classic symptoms of diabetes such as polyuria, polydypsia and polyphagia occur commonly in type 1 diabetes, which has a rapid development of severe hyperglycaemia and also in type 2 diabetes with very high levels of hyperglycaemia. Severe weight loss is common only in type 1 diabetes or if type 2 diabetes remains undetected for a long period. Unexplained weight loss, fatigue and restlessness and body pain are also common signs of undetected diabetes. Symptoms that are mild or have gradual development could also remain unnoticed.
From a dental perspective, pregnancy leads to hormonal changes that increase the mother’s risk of developing gingivitis and gingival lesions called pregnancy tumors (see Right). Not surprisingly, poor glycemic control further adds to this risk. Therefore, it is imperative that if you become pregnant, you should promptly see your dentist. He or she will work with you to ensure that your dental self-care regimen is maximized to prevent or control your dental disease. Additional Resources on Diabetes and Oral Health National Institute of Dental and Craniofacial Research www.nidcr.nih.gov American Diabetes Association www.diabetes.org American Dental Association www.dental.org American Academy of Periodontology www.perio.org The Diabetes Monitor www.diabetesmonitor.com David Mendosa www.mendosa.com Diatribe www.diatribe.us The information contained in this monograph is for educational purposes only. This information is not a substitute for professional medical advice, diagnosis, or treatment. If you have or suspect you may have a health concern, consult your professional health care provider. Reliance on any information provided in this monograph is solely at your own risk.

Type 2 DM is primarily due to lifestyle factors and genetics.[45] A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[16] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11]
Endocrinology is the specialty of medicine that deals with hormone disturbances, and both endocrinologists and pediatric endocrinologists manage patients with diabetes. People with diabetes may also be treated by family medicine or internal medicine specialists. When complications arise, people with diabetes may be treated by other specialists, including neurologists, gastroenterologists, ophthalmologists, surgeons, cardiologists, or others.
There are some interesting developments in blood glucose monitoring including continuous glucose sensors. The new continuous glucose sensor systems involve an implantable cannula placed just under the skin in the abdomen or in the arm. This cannula allows for frequent sampling of blood glucose levels. Attached to this is a transmitter that sends the data to a pager-like device. This device has a visual screen that allows the wearer to see, not only the current glucose reading, but also the graphic trends. In some devices, the rate of change of blood sugar is also shown. There are alarms for low and high sugar levels. Certain models will alarm if the rate of change indicates the wearer is at risk for dropping or rising blood glucose too rapidly. One version is specifically designed to interface with their insulin pumps. In most cases the patient still must manually approve any insulin dose (the pump cannot blindly respond to the glucose information it receives, it can only give a calculated suggestion as to whether the wearer should give insulin, and if so, how much). However, in 2013 the US FDA approved the first artificial pancreas type device, meaning an implanted sensor and pump combination that stops insulin delivery when glucose levels reach a certain low point. All of these devices need to be correlated to fingersticks measurements for a few hours before they can function independently. The devices can then provide readings for 3 to 5 days.
Information on mortality rates for type 1 diabetes mellitus is difficult to ascertain without complete national registers of childhood diabetes, although age-specific mortality is probably double that of the general population. [35, 36] Children aged 1-4 years are particularly at risk and may die due to DKA at the time of diagnosis. Adolescents are also a high-risk group. Most deaths result from delayed diagnosis or neglected treatment and subsequent cerebral edema during treatment for DKA, although untreated hypoglycemia also causes some deaths. Unexplained death during sleep may also occur and appears more likely to affect young males. [37]
Type 2 diabetes, which is often diagnosed when a person has an A1C of at least 7 on two separate occasions, can lead to potentially serious issues, like neuropathy, or nerve damage; vision problems; an increased risk of heart disease; and other diabetes complications. A person’s A1C is the two- to three-month average of his or her blood sugar levels.