The word mellitus (/məˈlaɪtəs/ or /ˈmɛlɪtəs/) comes from the classical Latin word mellītus, meaning "mellite"[114] (i.e. sweetened with honey;[114] honey-sweet[115]). The Latin word comes from mell-, which comes from mel, meaning "honey";[114][115] sweetness;[115] pleasant thing,[115] and the suffix -ītus,[114] whose meaning is the same as that of the English suffix "-ite".[116] It was Thomas Willis who in 1675 added "mellitus" to the word "diabetes" as a designation for the disease, when he noticed the urine of a diabetic had a sweet taste (glycosuria). This sweet taste had been noticed in urine by the ancient Greeks, Chinese, Egyptians, Indians, and Persians.
Diabetes mellitus is a metabolic condition in which a person's blood sugar (glucose) levels are too high. Over 29.1 million children and adults in the US have diabetes. Of that, 8.1 million people have diabetes and don't even know it. Type 1 diabetes (insulin-dependent, juvenile) is caused by a problem with insulin production by the pancreas. Type 2 diabetes (non-insulin dependent) is caused by:

Although this complication is not seen in pediatric patients, it is a significant cause of morbidity and premature mortality in adults with diabetes. People with type 1 diabetes mellitus have twice the risk of fatal myocardial infarction (MI) and stroke that people unaffected with diabetes do; in women, the MI risk is 4 times greater. People with type 1 diabetes mellitus also have 4 times greater risk for atherosclerosis.

Type 1 diabetes occurs when the immune system attacks and destroys the insulin-producing cells in the pancreas (the beta cells). As a result, the body is left without enough insulin to function normally (i.e. it becomes insulin deficient). This is called an autoimmune reaction, because the body attacks itself and produces antibodies to its own insulin-producing cells, thereby destroying them.
Rates of diabetes in 1985 were estimated at 30 million, increasing to 135 million in 1995 and 217 million in 2005.[18] This increase is believed to be primarily due to the global population aging, a decrease in exercise, and increasing rates of obesity.[18] The five countries with the greatest number of people with diabetes as of 2000 are India having 31.7 million, China 20.8 million, the United States 17.7 million, Indonesia 8.4 million, and Japan 6.8 million.[109] It is recognized as a global epidemic by the World Health Organization.[1]
Regular insulin is fast-acting and starts to work within 15-30 minutes, with its peak glucose-lowering effect about two hours after it is injected. Its effects last for about four to six hours. NPH (neutral protamine Hagedorn) and Lente insulin are intermediate-acting, starting to work within one to three hours and lasting up to 18-26 hours. Ultra-lente is a long-acting form of insulin that starts to work within four to eight hours and lasts 28-36 hours.
A metabolic disease in which carbohydrate use is reduced and that of lipid and protein enhanced; it is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma; long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection. 

People with type 1 diabetes and certain people with type 2 diabetes may use carbohydrate counting or the carbohydrate exchange system to match their insulin dose to the carbohydrate content of their meal. "Counting" the amount of carbohydrate in a meal is used to calculate the amount of insulin the person takes before eating. However, the carbohydrate-to-insulin ratio (the amount of insulin taken for each gram of carbohydrate in the meal) varies for each person, and people with diabetes need to work closely with a dietician who has experience in working with people with diabetes to master the technique. Some experts have advised use of the glycemic index (a measure of the impact of an ingested carbohydrate-containing food on the blood glucose level) to delineate between rapid and slowly metabolized carbohydrates, although there is little evidence to support this approach.
Insulin — the hormone that allows your body to regulate sugar in the blood — is made in your pancreas. Essentially, insulin resistance is a state in which the body’s cells do not use insulin efficiently. As a result, it takes more insulin than normal to transport blood sugar (glucose) into cells, to be used immediately for fuel or stored for later use. A drop in efficiency in getting glucose to cells creates a problem for cell function; glucose is normally the body’s quickest and most readily available source of energy.

If the amount of insulin available is insufficient, or if cells respond poorly to the effects of insulin (insulin insensitivity or insulin resistance), or if the insulin itself is defective, then glucose will not be absorbed properly by the body cells that require it, and it will not be stored appropriately in the liver and muscles. The net effect is persistently high levels of blood glucose, poor protein synthesis, and other metabolic derangements, such as acidosis.[60]
In an otherwise healthy individual, blood glucose levels usually do not rise above 180 mg/dL (9 mmol/L). In a child with diabetes, blood sugar levels rise if insulin is insufficient for a given glucose load. The renal threshold for glucose reabsorption is exceeded when blood glucose levels exceed 180 mg/dL (10 mmol/L), causing glycosuria with the typical symptoms of polyuria and polydipsia. (See Pathophysiology, Clinical, and Treatment.)
Several tests are helpful in identifying DM. These include tests of fasting plasma glucose levels, casual (randomly assessed) glucose levels, or glycosylated hemoglobin levels. Diabetes is currently established if patients have classic diabetic symptoms and if on two occasions fasting glucose levels exceed 126 mg/dL (> 7 mmol/L), random glucose levels exceed 200 mg/dL (11.1 mmol/L), or a 2-hr oral glucose tolerance test is 200 mg/dL or more. A hemoglobin A1c test that is more than two standard deviations above normal (6.5% or greater) is also diagnostic of the disease.
Jump up ^ McBrien, K; Rabi, DM; Campbell, N; Barnieh, L; Clement, F; Hemmelgarn, BR; Tonelli, M; Leiter, LA; Klarenbach, SW; Manns, BJ (6 August 2012). "Intensive and Standard Blood Pressure Targets in Patients With Type 2 Diabetes Mellitus: Systematic Review and Meta-analysis". Archives of Internal Medicine. 172 (17): 1–8. doi:10.1001/archinternmed.2012.3147. PMID 22868819.
The amount of glucose in the bloodstream is tightly regulated by insulin and other hormones. Insulin is always being released in small amounts by the pancreas. When the amount of glucose in the blood rises to a certain level, the pancreas will release more insulin to push more glucose into the cells. This causes the glucose levels in the blood (blood glucose levels) to drop.
Rosiglitazone, a thiazolidinedione, has not been found to improve long-term outcomes even though it improves blood sugar levels.[93] Additionally it is associated with increased rates of heart disease and death.[94] Angiotensin-converting enzyme inhibitors (ACEIs) prevent kidney disease and improve outcomes in those with diabetes.[95][96] The similar medications angiotensin receptor blockers (ARBs) do not.[96] A 2016 review recommended treating to a systolic blood pressure of 140 to 150 mmHg.[97]
Blood travels throughout your body, and when too much glucose (sugar) is present, it disrupts the normal environment that the organ systems of your body function within. In turn, your body starts to exhibit signs that things are not working properly inside—those are the symptoms of diabetes people sometimes experience. If this problem—caused by a variety of factors—is left untreated, it can lead to a number of damaging complications such as heart attacks, strokes, blindness, kidney failure, and blood vessel disease that may require an amputation, nerve damage, and impotence in men.
Skin care: High blood glucose and poor circulation can lead to skin problems such as slow healing after an injury or frequent infections. Make sure to wash every day with a mild soap and warm water, protect your skin by using sunscreen, take good care of any cuts or scrapes with proper cleansing and bandaging, and see your doctor when cuts heal slowly or if an infection develops.
Jump up ^ Attridge, Madeleine; Creamer, John; Ramsden, Michael; Cannings-John, Rebecca; Hawthorne, Kamila (2014-09-04). "Culturally appropriate health education for people in ethnic minority groups with type 2 diabetes mellitus". Cochrane Database of Systematic Reviews (9): CD006424. doi:10.1002/14651858.CD006424.pub3. ISSN 1469-493X. PMID 25188210.
The typical symptoms of diabetes mellitus are the three “polys:” polyuria, polydipsia, and polyphagia. Because of insulin deficiency, the assimilation and storage of glucose in muscle adipose tissues, and the liver is greatly diminished. This produces an accumulation of glucose in the blood and creates an increase in its osmolarity. In response to this increased osmotic pressure there is depletion of intracellular water and osmotic diuresis. The water loss creates intense thirst and increased urination. The increased appetite (polyphagia) is not as clearly understood. It may be the result of the body's effort to increase its supply of energy foods even though eating more carbohydrates in the absence of sufficient insulin does not meet the energy needs of the cells.
Several common medications can impair the body's use of insulin, causing a condition known as secondary diabetes. These medications include treatments for high blood pressure (furosemide, clonidine, and thiazide diuretics), drugs with hormonal activity (oral contraceptives, thyroid hormone, progestins, and glucocorticorids), and the anti-inflammation drug indomethacin. Several drugs that are used to treat mood disorders (such as anxiety and depression) also can impair glucose absorption. These drugs include haloperidol, lithium carbonate, phenothiazines, tricyclic antidepressants, and adrenergic agonists. Other medications that can cause diabetes symptoms include isoniazid, nicotinic acid, cimetidine, and heparin. A 2004 study found that low levels of the essential mineral chromium in the body may be linked to increased risk for diseases associated with insulin resistance.

How does high blood sugar (hyperglycemia) feel? To maintain the right amount of blood sugar, the body needs insulin, a hormone that delivers this sugar to the cells. When insulin is lacking, blood sugar builds up. We describe symptoms of high blood sugar, including fatigue, weight loss, and frequent urination. Learn who is at risk and when to see a doctor here. Read now
Many studies have shown that awareness about the diabetes and its complications is poor among the general population specially in the rural areas6,7. There is an urgent need to create awareness among the population regarding diabetes and about the serious consequences of this chronic disorder. Epidemiological data from India have shown the presence of a number of risk factors which can be easily identified by simple non-invasive risk scores8,9. The major risk factors are listed in Box 1.
"Secondary" diabetes refers to elevated blood sugar levels from another medical condition. Secondary diabetes may develop when the pancreatic tissue responsible for the production of insulin is destroyed by disease, such as chronic pancreatitis (inflammation of the pancreas by toxins like excessive alcohol), trauma, or surgical removal of the pancreas.
Hypoglycemia. Hypoglycemia or “insulin shock” is a common concern in DM management. It typically develops when a diabetic patient takes his or her normal dose of insulin without eating normally. As a result, the administered insulin can push the blood sugar to potentially dangerously low levels. Initially the patient may experience, sweating, nervousness, hunger and weakness. If the hypoglycemic patient is not promptly given sugar (sugar, cola, cake icing), he or she may lose consciousness and even lapse into coma. Questions and Answers about Diabetes and Your Mouth Q: If I have diabetes, will I develop the oral complications that were mentioned? A: It depends. There is a two-way relationship between your oral health and how well your blood sugar is controlled (glycemic control). Poor control of your blood sugar increases your risk of developing the multitude of complications associated with diabetes, including oral complications. Conversely, poor oral health interferes with proper glucose stabilization. Indeed, recent research has shown that diabetic patients who improve their oral health experience a modest improvement in their blood sugar levels. In essence, “Healthy mouths mean healthy bodies.” Q: What are the complications of diabetes therapy that can impact my oral health? A: One of the most worrisome urgent complications associated with diabetes management is the previously described hypoglycemia or insulin shock. In addition, many of the medications prescribed to treat diabetes and its complications, such as hypertension and heart disease, may induce adverse side effects affecting the mouth. Common side effects include dry mouth, taste aberrations, and mouth sores. Q: I have type-2 diabetes. Are my dental problems different than those experienced by people with type-1 diabetes? A: No. All patients with diabetes are at increased risk for the development of dental disease. What is different is that type-2 disease tends to progress more slowly than type-1 disease. Thus, most type-2 diabetes patients are diagnosed later in life, a time in which they are likely to already have existing dental problems. Remember, there is no dental disease unique to diabetes. Uncontrolled or poorly controlled diabetes simply compromises your body’s ability to control the existing disease.
Diabetes is a metabolic disorder that occurs when your blood sugar (glucose), is too high (hyperglycemia). Glucose is what the body uses for energy, and the pancreas produces a hormone called insulin that helps convert the glucose from the food you eat into energy. When the body either does not produce enough insulin, does not produce any at all, or your body becomes resistant to the insulin, the glucose does not reach your cells to be used for energy. This results in the health condition termed diabetes.
If you recognize any of the symptoms, contact your doctor immediately. A simple in-office test for sugar in the urine is used for diagnosis. If that test is positive, then a drop of blood from the fingertip will confirm diabetes. Every day, thousands of adults and children around the world are diagnosed, but many go undetected. Early diagnosis cannot prevent Type 1, but it can head off potentially devastating, even fatal, health concerns.
Insulin is a hormone produced by the beta cells within the pancreas in response to the intake of food. The role of insulin is to lower blood sugar (glucose) levels by allowing cells in the muscle, liver and fat to take up sugar from the bloodstream that has been absorbed from food, and store it away as energy. In type 1 diabetes (previously called insulin-dependent diabetes mellitus), the insulin-producing cells are destroyed and the body is not able to produce insulin naturally. This means that sugar is not stored away but is constantly released from energy stores giving rise to high sugar levels in the blood. This in turn causes dehydration and thirst (because the high glucose ‘spills over’ into the urine and pulls water out of the body at the same time). To exacerbate the problem, because the body is not making insulin it ‘thinks’ that it is starving so does everything it can to release even more stores of energy into the bloodstream. So, if left untreated, patients become increasingly unwell, lose weight, and develop a condition called diabetic ketoacidosis, which is due to the excessive release of acidic energy stores and causes severe changes to how energy is used and stored in the body.
Injections of insulin may either be added to oral medication or used alone.[24] Most people do not initially need insulin.[13] When it is used, a long-acting formulation is typically added at night, with oral medications being continued.[23][24] Doses are then increased to effect (blood sugar levels being well controlled).[24] When nightly insulin is insufficient, twice daily insulin may achieve better control.[23] The long acting insulins glargine and detemir are equally safe and effective,[98] and do not appear much better than neutral protamine Hagedorn (NPH) insulin, but as they are significantly more expensive, they are not cost effective as of 2010.[99] In those who are pregnant insulin is generally the treatment of choice.[23]
Type 2 diabetes is believed to have a strong genetic link, meaning that it tends to run in families. Several genes are being studied that may be related to the cause of type 2 diabetes. If you have any of the following type 2 diabetes risk factors, it’s important to ask your doctor about a diabetes test. With a proper diabetes diet and healthy lifestyle habits, along with diabetes medication, if necessary, you can manage type 2 diabetes just like you manage other areas of your life. Be sure to continue seeking the latest information on type 2 diabetes as you become your own health advocate.
Previously, CGMs required frequent calibration with fingerstick glucose testing. Also their results were not accurate enough so that people always had to do a fingerstick to verify a reading on their CGM before calculating a dose of insulin (for example before meals or to correct a high blood sugar). However, recent technological advances have improved CGMs. One professional CGM can be worn for up to 14 days without calibration. Another personal CGM can be used to guide insulin dosing without confirmation by fingerstick glucose. Finally, there are now systems in which the CGM device communicates with insulin pumps to either stop delivery of insulin when blood glucose is dropping (threshold suspend), or to give daily insulin (hybrid closed loop system).
Diabetes mellitus type 2 is characterized by high blood glucose in the context of insulin resistance and relative insulin deficiency.[51] This is in contrast to diabetes mellitus type 1 in which there is an absolute insulin deficiency due to destruction of islet cells in the pancreas and gestational diabetes mellitus that is a new onset of high blood sugars associated with pregnancy.[13] Type 1 and type 2 diabetes can typically be distinguished based on the presenting circumstances.[48] If the diagnosis is in doubt antibody testing may be useful to confirm type 1 diabetes and C-peptide levels may be useful to confirm type 2 diabetes,[52] with C-peptide levels normal or high in type 2 diabetes, but low in type 1 diabetes.[53]
Jump up ^ Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J (June 2010). "Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies". Lancet. 375 (9733): 2215–22. doi:10.1016/S0140-6736(10)60484-9. PMC 2904878. PMID 20609967.
Home blood glucose monitoring kits are available so patients with diabetes can monitor their own levels. A small needle or lancet is used to prick the finger and a drop of blood is collected and analyzed by a monitoring device. Some patients may test their blood glucose levels several times during a day and use this information to adjust their doses of insulin.
Arlan L Rosenbloom, MD is a member of the following medical societies: American Academy of Pediatrics, American College of Epidemiology, American Pediatric Society, Endocrine Society, Pediatric Endocrine Society, Society for Pediatric Research, Florida Chapter of The American Academy of Pediatrics, Florida Pediatric Society, International Society for Pediatric and Adolescent Diabetes
People usually develop type 2 diabetes after the age of 40 years, although people of South Asian origin are at an increased risk of the condition and may develop diabetes from the age of 25 onwards. The condition is also becoming increasingly common among children and adolescents across all populations. Type 2 diabetes often develops as a result of overweight, obesity and lack of physical activity and diabetes prevalence is on the rise worldwide as these problems become more widespread.
It’s no surprise that most people could stand to drink more water. In fact, the majority of Americans are drinking less than half of the recommended eight glasses of water each day. However, if you’re finding yourself excessively thirsty, that could be a sign that you’re dealing with dangerously high blood sugar. Patients with diabetes often find themselves extremely thirsty as their bodies try to flush out excess sugar in their blood when their own insulin production just won’t cut it. If you’re parched, instead of turning to a sugary drink, quench that thirst with one of the 50 Best Detox Waters for Fat Burning and Weight Loss!
Is it your fault for getting type 2 diabetes? No – type 2 diabetes is not a personal failing. It develops through a combination of factors that are still being uncovered and better understood. Lifestyle (food, exercise, stress, sleep) certainly plays a major role, but genetics play a significant role as well. Type 2 diabetes is often described in the media as a result of being overweight, but the relationship is not that simple. Many overweight individuals never get type 2, and some people with type 2 were never overweight, (although obesity is probably an underlying cause of insulin resistance). To make matters worse, when someone gains weight (for whatever reason), the body makes it extremely difficult to lose the new weight and keep it off. If it were just a matter of choice or a bit of willpower, we would probably all be skinny. At its core, type 2 involves two physiological issues: resistance to the insulin made by the person’s beta cells and too little insulin production relative to the amount one needs.

Jump up ^ Seida, Jennifer C.; Mitri, Joanna; Colmers, Isabelle N.; Majumdar, Sumit R.; Davidson, Mayer B.; Edwards, Alun L.; Hanley, David A.; Pittas, Anastassios G.; Tjosvold, Lisa; Johnson, Jeffrey A. (Oct 2014). "Effect of Vitamin D3 Supplementation on Improving Glucose Homeostasis and Preventing Diabetes: A Systematic Review and Meta-Analysis". The Journal of Clinical Endocrinology & Metabolism. 99 (10): 3551–60. doi:10.1210/jc.2014-2136. PMC 4483466. PMID 25062463.
There is currently no cure for diabetes. The condition, however, can be managed so that patients can live a relatively normal life. Treatment of diabetes focuses on two goals: keeping blood glucose within normal range and preventing the development of long-term complications. Careful monitoring of diet, exercise, and blood glucose levels are as important as the use of insulin or oral medications in preventing complications of diabetes. In 2003, the American Diabetes Association updated its Standards of Care for the management of diabetes. These standards help manage health care providers in the most recent recommendations for diagnosis and treatment of the disease.
Insulin is vital to patients with type 1 diabetes - they cannot live without a source of exogenous insulin. Without insulin, patients with type 1 diabetes develop severely elevated blood sugar levels. This leads to increased urine glucose, which in turn leads to excessive loss of fluid and electrolytes in the urine. Lack of insulin also causes the inability to store fat and protein along with breakdown of existing fat and protein stores. This dysregulation, results in the process of ketosis and the release of ketones into the blood. Ketones turn the blood acidic, a condition called diabetic ketoacidosis (DKA). Symptoms of diabetic ketoacidosis include nausea, vomiting, and abdominal pain. Without prompt medical treatment, patients with diabetic ketoacidosis can rapidly go into shock, coma, and even death may result.

When you have diabetes, excess sugar (glucose) builds up in your blood. Your kidneys are forced to work overtime to filter and absorb the excess sugar. If your kidneys can't keep up, the excess sugar is excreted into your urine, dragging along fluids from your tissues. This triggers more frequent urination, which may leave you dehydrated. As you drink more fluids to quench your thirst, you'll urinate even more.
In patients with type 2 diabetes, stress, infection, and medications (such as corticosteroids) can also lead to severely elevated blood sugar levels. Accompanied by dehydration, severe blood sugar elevation in patients with type 2 diabetes can lead to an increase in blood osmolality (hyperosmolar state). This condition can worsen and lead to coma (hyperosmolar coma). A hyperosmolar coma usually occurs in elderly patients with type 2 diabetes. Like diabetic ketoacidosis, a hyperosmolar coma is a medical emergency. Immediate treatment with intravenous fluid and insulin is important in reversing the hyperosmolar state. Unlike patients with type 1 diabetes, patients with type 2 diabetes do not generally develop ketoacidosis solely on the basis of their diabetes. Since in general, type 2 diabetes occurs in an older population, concomitant medical conditions are more likely to be present, and these patients may actually be sicker overall. The complication and death rates from hyperosmolar coma is thus higher than in diabetic ketoacidosis.
Oral Agents. Oral antidiabetic drugs (see hypoglycemic agents) are sometimes prescribed for patients with type 2 diabetes who cannot control their blood glucose with diet and exercise. These are not oral forms of insulin; they are sulfonylureas, chemically related to the sulfonamide antibiotics. Patients receiving them should be taught that the drug they are taking does not eliminate the need for a diet and exercise program. Only the prescribed dosage should be taken; it should never be increased to make up for dietary indiscretions or discontinued unless authorized by the physician.
Poor vision, limited manual dexterity due to arthritis, tremor, or stroke, or other physical limitations may make monitoring blood glucose levels more difficult for older people. However, special monitors are available. Some have large numerical displays that are easier to read. Some provide audible instructions and results. Some monitors read blood glucose levels through the skin and do not require a blood sample. People can consult a diabetes educator to determine which meter is most appropriate.
Large, population-based studies in China, Finland and USA have recently demonstrated the feasibility of preventing, or delaying, the onset of diabetes in overweight subjects with mild glucose intolerance (IGT). The studies suggest that even moderate reduction in weight and only half an hour of walking each day reduced the incidence of diabetes by more than one half.
Although there are dozens of known type 1 genes, about half of the risk attributable to heredity comes from a handful that coordinate a part of the immune system called HLA, which helps the body recognize nefarious foreign invaders, such as viruses, bacteria, and parasites. Type 1 diabetes is an autoimmune disease, in which the body's own immune system destroys the cells in the pancreas that produce insulin, so perhaps it is no surprise that immunity genes are involved. Other autoimmune diseases share the HLA gene link, which may be why people with type 1 are more likely to develop additional auto­immune disorders.
Certain genetic markers have been shown to increase the risk of developing Type 1 diabetes. Type 2 diabetes is strongly familial, but it is only recently that some genes have been consistently associated with increased risk for Type 2 diabetes in certain populations. Both types of diabetes are complex diseases caused by mutations in more than one gene, as well as by environmental factors.
Type 2 DM is characterized by insulin resistance, which may be combined with relatively reduced insulin secretion.[11] The defective responsiveness of body tissues to insulin is believed to involve the insulin receptor. However, the specific defects are not known. Diabetes mellitus cases due to a known defect are classified separately. Type 2 DM is the most common type of diabetes mellitus.[2]
Type 1 diabetes mellitus is characterized by loss of the insulin-producing beta cells of the pancreatic islets, leading to insulin deficiency. This type can be further classified as immune-mediated or idiopathic. The majority of type 1 diabetes is of the immune-mediated nature, in which a T cell-mediated autoimmune attack leads to the loss of beta cells and thus insulin.[38] It causes approximately 10% of diabetes mellitus cases in North America and Europe. Most affected people are otherwise healthy and of a healthy weight when onset occurs. Sensitivity and responsiveness to insulin are usually normal, especially in the early stages. Type 1 diabetes can affect children or adults, but was traditionally termed "juvenile diabetes" because a majority of these diabetes cases were found in children.[citation needed]
Fatigue and muscle weakness occur because the glucose needed for energy simply is not metabolized properly. Weight loss in type 1 diabetes patients occurs partly because of the loss of body fluid and partly because in the absence of sufficient insulin the body begins to metabolize its own proteins and stored fat. The oxidation of fats is incomplete, however, and the fatty acids are converted into ketone bodies. When the kidney is no longer able to handle the excess ketones the patient develops ketosis. The overwhelming presence of the strong organic acids in the blood lowers the pH and leads to severe and potentially fatal ketoacidosis.
Originally described in approximately 30% of patients with type 1 diabetes mellitus, limited joint mobility occurs in 50% of patients older than age 10 years who have had diabetes for longer than 5 years. The condition restricts joint extension, making it difficult to press the hands flat against each other. The skin of patients with severe joint involvement has a thickened and waxy appearance.
Most cases (95%) of type 1 diabetes mellitus are the result of environmental factors interacting with a genetically susceptible person. This interaction leads to the development of autoimmune disease directed at the insulin-producing cells of the pancreatic islets of Langerhans. These cells are progressively destroyed, with insulin deficiency usually developing after the destruction of 90% of islet cells.

^ Jump up to: a b c Simpson, Terry C.; Weldon, Jo C.; Worthington, Helen V.; Needleman, Ian; Wild, Sarah H.; Moles, David R.; Stevenson, Brian; Furness, Susan; Iheozor-Ejiofor, Zipporah (2015-11-06). "Treatment of periodontal disease for glycaemic control in people with diabetes mellitus". Cochrane Database of Systematic Reviews (11): CD004714. doi:10.1002/14651858.CD004714.pub3. ISSN 1469-493X. PMID 26545069.

Type I diabetes, sometimes called juvenile diabetes, begins most commonly in childhood or adolescence. In this form of diabetes, the body produces little or no insulin. It is characterized by a sudden onset and occurs more frequently in populations descended from Northern European countries (Finland, Scotland, Scandinavia) than in those from Southern European countries, the Middle East, or Asia. In the United States, approximately three people in 1,000 develop Type I diabetes. This form also is called insulin-dependent diabetes because people who develop this type need to have daily injections of insulin.

Merck & Co., Inc., Kenilworth, NJ, USA is a global healthcare leader working to help the world be well. From developing new therapies that treat and prevent disease to helping people in need, we are committed to improving health and well-being around the world. The Merck Manual was first published in 1899 as a service to the community. The legacy of this great resource continues as the Merck Manual in the US and Canada and the MSD Manual outside of North America. Learn more about our commitment to Global Medical Knowledge.
Education: People with diabetes should learn as much as possible about this condition and how to manage it. The more you know about your condition, the better prepared you are to manage it on a daily basis. Many hospitals offer diabetes education programs and many nurses and pharmacists have been certified to provide diabetes education. Contact a local hospital, doctor, or pharmacist to find out about programs and diabetes educators in your area.

In addition to learning about diabetes itself, older people may have to learn how to fit management of diabetes in with their management of other disorders. Learning about how to avoid complications, such as dehydration, skin breakdown, and circulation problems, and to manage factors that can contribute to complications of diabetes, such as high blood pressure and high cholesterol levels, is especially important. Such problems become more common as people age, whether they have diabetes or not.
Pay attention if you find yourself feeling drowsy or lethargic; pain or numbness in your extremities; vision changes; fruity or sweet-smelling breath which is one of the symptoms of high ketones; and experiencing nausea or vomiting—as these are additional signs that something is not right. If there’s any question, see your doctor immediately to ensure that your blood sugar levels are safe and rule out diabetes.