Diabetes: The differences between types 1 and 2 There are fundamental differences between diabetes type 1 and type 2, including when they might occur, their causes, and how they affect someone's life. Find out here what distinguishes the different forms of the disease, the various symptoms, treatment methods, and how blood tests are interpreted. Read now
Another less common form is gestational diabetes, a temporary condition that occurs during pregnancy. Depending on risk factors, between 3% to 13% of Canadian women will develop gestational diabetes which can be harmful for the baby if not controlled. The problem usually clears up after delivery, but women who have had gestational diabetes have a higher risk of developing type 2 diabetes later in life.

Insulin is released into the blood by beta cells (β-cells), found in the islets of Langerhans in the pancreas, in response to rising levels of blood glucose, typically after eating. Insulin is used by about two-thirds of the body's cells to absorb glucose from the blood for use as fuel, for conversion to other needed molecules, or for storage. Lower glucose levels result in decreased insulin release from the beta cells and in the breakdown of glycogen to glucose. This process is mainly controlled by the hormone glucagon, which acts in the opposite manner to insulin.[61]


Inhalable insulin has been developed.[125] The original products were withdrawn due to side effects.[125] Afrezza, under development by the pharmaceuticals company MannKind Corporation, was approved by the United States Food and Drug Administration (FDA) for general sale in June 2014.[126] An advantage to inhaled insulin is that it may be more convenient and easy to use.[127]
Dr. May currently works as a fulltime endocrinologist and has been in private practice since 2004. He has a variety of interests, predominantly obesity and diabetes, but also sees patients with osteoporosis, thyroid disorders, men's health disorders, pituitary and adrenal disorders, polycystic ovaries, and disorders of growth. He is a leading member of several obesity and diabetes societies and runs a trial centre for new drugs.
Get Educated: The American Diabetes Association advises that all persons with diabetes receive diabetes self-management education (DSME) at diagnosis and thereafter. A certified diabetes educator or other qualified health professional can give you the tools you need to understand and take care of your diabetes. In addition, these individuals are trained to create a customized plan that works for you. Diabetes self-management education is a patient-centered approach that enables patients to get involved in their care.
Managing your blood glucose, blood pressure, and cholesterol, and quitting smoking if you smoke, are important ways to manage your type 2 diabetes. Lifestyle changes that include planning healthy meals, limiting calories if you are overweight, and being physically active are also part of managing your diabetes. So is taking any prescribed medicines. Work with your health care team to create a diabetes care plan that works for you.

Knowledge is power. A certified diabetes educator can provide you with diabetes self-management education. They specialize in diabetes and can help you learn about complicated or easier things. For example, they can help you set up your glucose meter, teach you about how your medicines work, or help you put together a meal plan. You can meet with them one on one or in group setting.


Sources of complex carbohydrates include whole-wheat bread and brown rice, legumes like black beans, and quinoa. These foods contain fiber, vitamins, and minerals that are appropriate for any eating plan, regardless of whether you have prediabetes, have diabetes, or are perfectly healthy. In fact, experts know including complex carbs in your daily diet can help you maintain a healthy weight, among other health benefits.

Large, population-based studies in China, Finland and USA have recently demonstrated the feasibility of preventing, or delaying, the onset of diabetes in overweight subjects with mild glucose intolerance (IGT). The studies suggest that even moderate reduction in weight and only half an hour of walking each day reduced the incidence of diabetes by more than one half.
A person of Asian origin aged 35 yr or more with two or more of the above risk factors, should undergo a screening test for diabetes. An oral glucose tolerance test (OGTT) is commonly used as the screening test10. Fasting and 2 h post glucose tests can identify impaired fasting glucose (IFG) (fasting glucose >110 - <125 mg/dl), impaired glucose tolerance (IGT) (2 h glucose >140-<200 mg/dl) and presence of diabetes (fasting > 126 and 2 h glucose >200 mg/dl). If a random blood glucose value is > 150 mg/dl, further confirmation by an OGTT is warranted. Recently, glycosylated haemoglobin (HbA1c) has been recommended as the test for diagnosis of diabetes (>6.5%). Presence of pre-diabetes is indicated by HbA1c values between 5.7 - 6.4 per cent11.
On behalf of the millions of Americans who live with or are at risk for diabetes, we are committed to helping you understand this chronic disease. Help us set the record straight and educate the world about diabetes and its risk factors by sharing the common questions and answers below. If you're new to type 2 diabetes, join our Living With Type 2 Diabetes program to get more facts.

Jump up ^ Boussageon, R; Supper, I; Bejan-Angoulvant, T; Kellou, N; Cucherat, M; Boissel, JP; Kassai, B; Moreau, A; Gueyffier, F; Cornu, C (2012). Groop, Leif, ed. "Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials". PLOS Medicine. 9 (4): e1001204. doi:10.1371/journal.pmed.1001204. PMC 3323508. PMID 22509138.


Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) refer to levels of blood glucose concentration above the normal range, but below those which are diagnostic for diabetes. Subjects with IGT and/or IFG are at substantially higher risk of developing diabetes and cardiovascular disease than those with normal glucose tolerance. The benefits of clinical intervention in subjects with moderate glucose intolerance is a topic of much current interest.
"We know that there is a very large genetic component," Rettinger says. "A person with a first-degree relative with Type 2 diabetes has a five to 10 time higher risk of developing diabetes than a person the same age and weight without a family history of Type 2 diabetes." Heredity actually plays a larger role in Type 2 diabetes than Type 1, Rettinger says.

Insulin-dependent diabetes mellitus is believed to result from autoimmune, environmental, and/or genetic factors. Whatever the cause, the end result is destruction of insulin-producing pancreatic beta cells, a dramatic decrease in the secretion of insulin, and hyperglycemia. Non-insulin-dependent diabetes mellitus is presumably heterogeneous in origin. It is associated with older age, obesity, a family history of diabetes, and ethnicity (genetic components). The vast majority of those with non-insulin-dependent diabetes are overweight Kahn (2003). This form of the disorder has a much slower rate of progression than insulin-dependent diabetes. Over time the ability to respond to insulin decreases, resulting in increased levels of blood glucose. The pancreatic secretion of insulin increases in an attempt to compensate for the elevated levels of glucose. If the condition is untreated, the pancreatic production of insulin decreases and may even cease.


Exercise. A program of regular exercise gives anyone a sense of good health and well-being; for persons with diabetes it gives added benefits by helping to control blood glucose levels, promoting circulation to peripheral tissues, and strengthening the heart beat. In addition, there is evidence that exercise increases the number of insulin receptor sites on the surface of cells and thus facilitates the metabolism of glucose. Many specialists in diabetes consider exercise so important in the management of diabetes that they prescribe rather than suggest exercise.
The progression of nephropathy in patients can be significantly slowed by controlling high blood pressure, and by aggressively treating high blood sugar levels. Angiotensin converting enzyme inhibitors (ACE inhibitors) or angiotensin receptor blockers (ARBs) used in treating high blood pressure may also benefit kidney disease in patients with diabetes.
Diabetes insipidus is characterized by excessive urination and thirst, as well as a general feeling of weakness. While these can also be symptoms of diabetes mellitus, if you have diabetes insipidus your blood sugar levels will be normal and no sugar present in your urine. Diabetes insipidus is a problem of fluid balance caused by a problem with the kidneys, where they can't stop the excretion of water. Polyuria (excessive urine) and polydipsia (excessive thirst) occur in diabetes mellitus as a reaction to high blood sugar.
An article published in November 2012 in the journal Global Public Health found that countries with more access to HFCS tended to have higher rates of the disease. Though it’s likely that these countries’ overall eating habits play a role in their populations’ diabetes risk, a study published in February 2013 in the journal PLoS One found limiting access to HFCS in particular may help reduce rates of the diagnosis.
This depends on the type of diabetes. Type 2 diabetes, and to a lesser extent type 1 diabetes, may run in families. If a parent has diabetes, their children will not necessarily get it but they are at an increased risk. In type 2 diabetes, lifestyle factors such as being overweight (obesity) and lack of exercise can significantly increase your risk of developing diabetes. Some rarer types of diabetes mellitus may be inherited.
Low blood sugar (hypoglycemia). If your blood sugar level drops below your target range, it's known as low blood sugar (hypoglycemia). Your blood sugar level can drop for many reasons, including skipping a meal, inadvertently taking more medication than usual or getting more physical activity than normal. Low blood sugar is most likely if you take glucose-lowering medications that promote the secretion of insulin or if you're taking insulin.
Jump up ^ Boussageon, R; Supper, I; Bejan-Angoulvant, T; Kellou, N; Cucherat, M; Boissel, JP; Kassai, B; Moreau, A; Gueyffier, F; Cornu, C (2012). Groop, Leif, ed. "Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials". PLOS Medicine. 9 (4): e1001204. doi:10.1371/journal.pmed.1001204. PMC 3323508. PMID 22509138.
Type 1 diabetes occurs when the immune system attacks and destroys the insulin-producing cells in the pancreas (the beta cells). As a result, the body is left without enough insulin to function normally (i.e. it becomes insulin deficient). This is called an autoimmune reaction, because the body attacks itself and produces antibodies to its own insulin-producing cells, thereby destroying them.

A random blood sugar of greater than 11.1 mmol/l (200 mg/dl) in association with typical symptoms[23] or a glycated hemoglobin (HbA1c) of ≥ 48 mmol/mol (≥ 6.5 DCCT %) is another method of diagnosing diabetes.[10] In 2009 an International Expert Committee that included representatives of the American Diabetes Association (ADA), the International Diabetes Federation (IDF), and the European Association for the Study of Diabetes (EASD) recommended that a threshold of ≥ 48 mmol/mol (≥ 6.5 DCCT %) should be used to diagnose diabetes.[48] This recommendation was adopted by the American Diabetes Association in 2010.[49] Positive tests should be repeated unless the person presents with typical symptoms and blood sugars >11.1 mmol/l (>200 mg/dl).[48]

Know Your Numbers: Knowing your ABCs—A1c, blood pressure, and cholesterol—are important in reducing your risk for diabetes and keeping your diabetes in good control. If you are someone with diabetes who has elevated blood pressure or cholesterol, you are increasing your risk of heart attack and stroke. Your physician will give you your A1c, blood pressure, and cholesterol targets. Make sure you pay attention to them and understand what they mean and why they are important.

Patient Education. Successful management of diabetes requires that the patient actively participate in and be committed to the regimen of care. The problem of poor control can cause serious or even deadly short-term and long-term complications, with devastating effects on the patient's longevity and sense of well being. There are many teaching aids available to help persons with diabetes understand their disease and comply with prescribed therapy. In general, a patient education program should include the following components:
DM affects at least 16 million U.S. residents, ranks seventh as a cause of death in the United States, and costs the national economy over $100 billion yearly. The striking increase in the prevalence of DM in the U.S. during recent years has been linked to a rise in the prevalence of obesity. About 95% of those with DM have Type 2, in which the pancreatic beta cells retain some insulin-producing potential, and the rest have Type 1, in which exogenous insulin is required for long-term survival. In Type 1 DM, which typically causes symptoms before age 25, an autoimmune process is responsible for beta cell destruction. Type 2 DM is characterized by insulin resistance in peripheral tissues as well as a defect in insulin secretion by beta cells. Insulin regulates carbohydrate metabolism by mediating the rapid transport of glucose and amino acids from the circulation into muscle and other tissue cells, by promoting the storage of glucose in liver cells as glycogen, and by inhibiting gluconeogenesis. The normal stimulus for the release of insulin from the pancreas is a rise in the concentration of glucose in circulating blood, which typically occurs within a few minutes after a meal. When such a rise elicits an appropriate insulin response, so that the blood level of glucose falls again as it is taken into cells, glucose tolerance is said to be normal. The central fact in DM is an impairment of glucose tolerance of such a degree as to threaten or impair health. Long recognized as an independent risk factor for cardiovascular disease, DM is often associated with other risk factors, including disorders of lipid metabolism (elevation of very-low-density lipoprotein cholesterol and triglycerides and depression of high-density lipoprotein cholesterol), obesity, hypertension, and impairment of renal function. Sustained elevation of serum glucose and triglycerides aggravates the biochemical defect inherent in DM by impairing insulin secretion, insulin-mediated glucose uptake by cells, and hepatic regulation of glucose output. Long-term consequences of the diabetic state include macrovascular complications (premature or accelerated atherosclerosis with resulting coronary, cerebral, and peripheral vascular insufficiency) and microvascular complications (retinopathy, nephropathy, and neuropathy). It is estimated that half those with DM already have some complications when the diagnosis is made. The American Diabetes Association (ADA) recommends screening for DM for people with risk factors such as obesity, age 45 years or older, family history of DM, or history of gestational diabetes. If screening yields normal results, it should be repeated every 3 years. The diagnosis of DM depends on measurement of plasma glucose concentration. The diagnosis is confirmed when any two measurements of plasma glucose performed on different days yield levels at or above established thresholds: in the fasting state, 126 mg/dL (7 mmol/L); 2 hours postprandially (after a 75-g oral glucose load) or at random, 200 mg/dL (11.1 mmol/L). A fasting plasma glucose of 100-125 mg/dL (5.5-6.9 mmol/L) or a 2-hour postprandial glucose of 140-199 mg/dL (7.8-11 mmol/L) is defined as impaired glucose tolerance. People with impaired glucose tolerance are at higher risk of developing DM within 10 years. For such people, lifestyle modification such as weight reduction and exercise may prevent or postpone the onset of frank DM. Current recommendations for the management of DM emphasize education and individualization of therapy. Controlled studies have shown that rigorous maintenance of plasma glucose levels as near to normal as possible at all times substantially reduces the incidence and severity of long-term complications, particularly microvascular complications. Such control involves limitation of dietary carbohydrate and saturated fat; monitoring of blood glucose, including self-testing by the patient and periodic determination of glycosylated hemoglobin; and administration of insulin (particularly in Type 1 DM), drugs that stimulate endogenous insulin production (in Type 2 DM), or both. The ADA recommends inclusion of healthful carbohydrate-containing foods such as whole grains, fruits, vegetables, and low-fat milk in a diabetic diet. Restriction of dietary fat to less than 10% of total calories is recommended for people with diabetes, as for the general population. Further restriction may be appropriate for those with heart disease or elevated cholesterol or triglyceride levels. The ADA advises that high-protein, low-carbohydrate diets have no particular merit in long-term weight control or in maintenance of a normal plasma glucose level in DM. Pharmaceutical agents developed during the 1990s improve control of DM by enhancing responsiveness of cells to insulin, counteracting insulin resistance, and reducing postprandial carbohydrate absorption. Tailor-made insulin analogues produced by recombinant DNA technology (for example, lispro, aspart, and glargine insulins) have broadened the range of pharmacologic properties and treatment options available. Their use improves both short-term and long-term control of plasma glucose and is associated with fewer episodes of hypoglycemia. SEE ALSO insulin resistance
The body’s immune system is responsible for fighting off foreign invaders, like harmful viruses and bacteria. In people with type 1 diabetes, the immune system mistakes the body’s own healthy cells for foreign invaders. The immune system attacks and destroys the insulin-producing beta cells in the pancreas. After these beta cells are destroyed, the body is unable to produce insulin.
Patients with type 2 diabetes can still make insulin, but not enough to control their glucose levels. Type 2 diabetes is therefore initially treated with a combination of lifestyle changes (diet and exercise) which reduce the need for insulin and therefore lower glucose levels. If this is insufficient to achieve good glucose control, a range of tablets are available. These include metformin and pioglitazone, which, like diet and exercise, reduce insulin requirements; sulphonylureas (e.g. gliclazide), which stimulate insulin secretion; DPP4 inhibitors (e.g sitagliptin) and GLP-1 agonists (e.g. liraglutide), which stimulate insulin production and reduce appetite; and SGLT2 inhibitors (e.g. dapagliflozin), which lower blood sugar levels by causing sugar to pass out of the body in the urine. In many patients, particularly after several years of treatment, insulin production is so low or so insufficient compared with the patient's needs that patients with type 2 diabetes have to be treated with insulin injections, either alone or in combination with tablets.

^ Jump up to: a b c d Inzucchi, SE; Bergenstal, RM; Buse, JB; Diamant, M; Ferrannini, E; Nauck, M; Peters, AL; Tsapas, A; Wender, R; Matthews, DR (March 2015). "Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes". Diabetologia. 58 (3): 429–42. doi:10.1007/s00125-014-3460-0. PMID 25583541.
For Candace Clark, bariatric surgery meant the difference between struggling with weight issues, including medical problems triggered by obesity, and enjoying renewed health and energy. "I felt like I was slowly dying," says Candace Clark, a 54-year-old Barron, Wisconsin, resident who had dealt with weight issues for years. "I was tired of feeling the way [...]
So what determines where fat is stored, and thus a person's propensity for insulin resistance and type 2 diabetes? Well, just having more fat in the body increases the risk that some of it will get misplaced. But exercise may also have a role in fat placement. Exercise is known to reduce insulin resistance; one way it may do this is by burning fat out of the muscle. Because of this, getting enough exercise may stave off type 2 in some cases. Genes may also help orchestrate the distribution of fat in the body, which illustrates how lifestyle and genetics interact.
Sources of processed or added sugar, including condiments, honey, and especially sugary drinks, are just a few of the potential culprits for weight gain, Grieger says, and it’s when they’re consumed in excess that they can contribute to diabetes risk. “The largest source of added sugar comes from sweetened beverages. They run the gamut of soda, sweetened tea, juices with added sugar, sports drinks — it’s a plethora. Just about everything we drink has added sugar in it, except for water,” she explains.
5. Signs and symptoms ofhyperglycemiaandhypoglycemia, and measures to take when they occur. (See accompanying table.) It is important for patients to become familiar with specific signs that are unique to themselves. Each person responds differently and may exhibit symptoms different from those experienced by others. It should be noted that the signs and symptoms may vary even within one individual. Thus it is vital that the person understand all reactions that could occur. When there is doubt, a simple blood glucose reading will determine the actions that should be taken.
Patients with Type I diabetes need daily injections of insulin to help their bodies use glucose. The amount and type of insulin required depends on the height, weight, age, food intake, and activity level of the individual diabetic patient. Some patients with Type II diabetes may need to use insulin injections if their diabetes cannot be controlled with diet, exercise, and oral medication. Injections are given subcutaneously, that is, just under the skin, using a small needle and syringe. Injection sites can be anywhere on the body where there is looser skin, including the upper arm, abdomen, or upper thigh.
Long-term complications arise from the damaging effects of prolonged hyperglycemia and other metabolic consequences of insulin deficiency on various tissues. Although long-term complications are rare in childhood, maintaining good control of diabetes is important to prevent complications from developing in later life. [39] The likelihood of developing complications appears to depend on the interaction of factors such as metabolic control, genetic susceptibility, lifestyle (eg, smoking, diet, exercise), pubertal status, and gender. [40, 41] Long-term complications include the following:
Jump up ^ Kyu, Hmwe H.; Bachman, Victoria F.; Alexander, Lily T.; Mumford, John Everett; Afshin, Ashkan; Estep, Kara; Veerman, J. Lennert; Delwiche, Kristen; Iannarone, Marissa L.; Moyer, Madeline L.; Cercy, Kelly; Vos, Theo; Murray, Christopher J.L.; Forouzanfar, Mohammad H. (9 August 2016). "Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013". The BMJ. 354: i3857. doi:10.1136/bmj.i3857. PMC 4979358. PMID 27510511.
People with T2D produce insulin, but their bodies don’t use it correctly; this is referred to as being insulin resistant. People with type 2 diabetes may also be unable to produce enough insulin to handle the glucose in their body. In these instances, insulin is needed to allow the glucose to travel from the bloodstream into our cells, where it’s used to create energy.
^ Jump up to: a b Funnell, Martha M.; Anderson, Robert M. (2008). "Influencing self-management: from compliance to collaboration". In Feinglos, Mark N.; Bethel, M. Angelyn. Type 2 diabetes mellitus: an evidence-based approach to practical management. Contemporary endocrinology. Totowa, NJ: Humana Press. p. 462. ISBN 978-1-58829-794-5. OCLC 261324723.
Jump up ^ Seida, Jennifer C.; Mitri, Joanna; Colmers, Isabelle N.; Majumdar, Sumit R.; Davidson, Mayer B.; Edwards, Alun L.; Hanley, David A.; Pittas, Anastassios G.; Tjosvold, Lisa; Johnson, Jeffrey A. (Oct 2014). "Effect of Vitamin D3 Supplementation on Improving Glucose Homeostasis and Preventing Diabetes: A Systematic Review and Meta-Analysis". The Journal of Clinical Endocrinology & Metabolism. 99 (10): 3551–60. doi:10.1210/jc.2014-2136. PMC 4483466. PMID 25062463.
Diabetes mellitus is a metabolic condition in which a person's blood sugar (glucose) levels are too high. Over 29.1 million children and adults in the US have diabetes. Of that, 8.1 million people have diabetes and don't even know it. Type 1 diabetes (insulin-dependent, juvenile) is caused by a problem with insulin production by the pancreas. Type 2 diabetes (non-insulin dependent) is caused by:
×