Although this complication is not seen in pediatric patients, it is a significant cause of morbidity and premature mortality in adults with diabetes. People with type 1 diabetes mellitus have twice the risk of fatal myocardial infarction (MI) and stroke that people unaffected with diabetes do; in women, the MI risk is 4 times greater. People with type 1 diabetes mellitus also have 4 times greater risk for atherosclerosis.

Finally, modern society should probably shoulder at least some of the blame for the type 2 diabetes epidemic. Access to cheap, calorie-laden foods may even influence type 2 risk beyond simply their effects on body weight; the stuff that is in processed foods, like high-fructose corn syrup, could alter the body's chemistry or gut microbes in a way that affects health. Add to that the fact that most Americans are sedentary, spending their time sitting in cubicles, driving in cars, playing video games, or watching television. The lack of exercise, plus the abundance of unhealthy foods, cultivates a fertile breeding ground for diabetes.
Your doctor will carefully examine you at each visit for diabetes. In particular they will examine your cardiovascular system, eyes and neurological systems to detect any complications present. In the acute phase you may appear wasted and dehydrated. You may have difficulty breathing and have a sweet smell to your breath. In the later stages, your doctor will check your pulse, listen to your heart, measure your blood pressure (often lying and standing) and examine your limbs to detect any loss of sensation or ulcers.
Fatigue and muscle weakness occur because the glucose needed for energy simply is not metabolized properly. Weight loss in type 1 diabetes patients occurs partly because of the loss of body fluid and partly because in the absence of sufficient insulin the body begins to metabolize its own proteins and stored fat. The oxidation of fats is incomplete, however, and the fatty acids are converted into ketone bodies. When the kidney is no longer able to handle the excess ketones the patient develops ketosis. The overwhelming presence of the strong organic acids in the blood lowers the pH and leads to severe and potentially fatal ketoacidosis.
Diabetes mellitus is a condition in which the body does not produce enough of the hormone insulin, resulting in high levels of sugar in the bloodstream. There are many different types of diabetes; the most common are type 1 and type 2 diabetes, which are covered in this article. Gestational diabetes occurs during the second half of pregnancy and is covered in a separate article. Diabetes can also be caused by disease or damage to the pancreas, Cushing's syndrome, acromegaly and there are also some rare genetic forms.
Jump up ^ Piwernetz K, Home PD, Snorgaard O, Antsiferov M, Staehr-Johansen K, Krans M (May 1993). "Monitoring the targets of the St Vincent Declaration and the implementation of quality management in diabetes care: the DIABCARE initiative. The DIABCARE Monitoring Group of the St Vincent Declaration Steering Committee". Diabetic Medicine. 10 (4): 371–7. doi:10.1111/j.1464-5491.1993.tb00083.x. PMID 8508624.
a complex disorder of carbohydrate, fat, and protein metabolism that is primarily a result of a deficiency or complete lack of insulin secretion by the beta cells of the pancreas or resistance to insulin. The disease is often familial but may be acquired, as in Cushing's syndrome, as a result of the administration of excessive glucocorticoid. The various forms of diabetes have been organized into categories developed by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus of the American Diabetes Association. Type 1 diabetes mellitus in this classification scheme includes patients with diabetes caused by an autoimmune process, dependent on insulin to prevent ketosis. This group was previously called type I, insulin-dependent diabetes mellitus, juvenile-onset diabetes, brittle diabetes, or ketosis-prone diabetes. Patients with type 2 diabetes mellitus are those previously designated as having type II, non-insulin-dependent diabetes mellitus, maturity-onset diabetes, adult-onset diabetes, ketosis-resistant diabetes, or stable diabetes. Those with gestational diabetes mellitus are women in whom glucose intolerance develops during pregnancy. Other types of diabetes are associated with a pancreatic disease, hormonal changes, adverse effects of drugs, or genetic or other anomalies. A fourth subclass, the impaired glucose tolerance group, also called prediabetes, includes persons whose blood glucose levels are abnormal although not sufficiently above the normal range to be diagnosed as having diabetes. Approximately 95% of the 18 million diabetes patients in the United States are classified as type 2, and more than 70% of those patients are obese. About 1.3 million new cases of diabetes mellitus are diagnosed in the United States each year. Contributing factors to the development of diabetes are heredity; obesity; sedentary life-style; high-fat, low-fiber diets; hypertension; and aging. See also impaired glucose tolerance, potential abnormality of glucose tolerance, previous abnormality of glucose tolerance.

Gestational diabetes mellitus (GDM) resembles type 2 DM in several respects, involving a combination of relatively inadequate insulin secretion and responsiveness. It occurs in about 2–10% of all pregnancies and may improve or disappear after delivery.[50] However, after pregnancy approximately 5–10% of women with GDM are found to have DM, most commonly type 2.[50] GDM is fully treatable, but requires careful medical supervision throughout the pregnancy. Management may include dietary changes, blood glucose monitoring, and in some cases, insulin may be required.
Purified human insulin is most commonly used, however, insulin from beef and pork sources also are available. Insulin may be given as an injection of a single dose of one type of insulin once a day. Different types of insulin can be mixed and given in one dose or split into two or more doses during a day. Patients who require multiple injections over the course of a day may be able to use an insulin pump that administers small doses of insulin on demand. The small battery-operated pump is worn outside the body and is connected to a needle that is inserted into the abdomen. Pumps can be programmed to inject small doses of insulin at various times during the day, or the patient may be able to adjust the insulin doses to coincide with meals and exercise.
Studies in type 1 patients have shown that in intensively treated patients, diabetic eye disease decreased by 76%, kidney disease decreased by 54%, and nerve disease decreased by 60%. More recently the EDIC trial has shown that type 1 diabetes is also associated with increased heart disease, similar to type 2 diabetes. However, the price for aggressive blood sugar control is a two to three fold increase in the incidence of abnormally low blood sugar levels (caused by the diabetes medications). For this reason, tight control of diabetes to achieve glucose levels between 70 to120 mg/dl is not recommended for children under 13 years of age, patients with severe recurrent hypoglycemia, patients unaware of their hypoglycemia, and patients with far advanced diabetes complications. To achieve optimal glucose control without an undue risk of abnormally lowering blood sugar levels, patients with type 1 diabetes must monitor their blood glucose at least four times a day and administer insulin at least three times per day. In patients with type 2 diabetes, aggressive blood sugar control has similar beneficial effects on the eyes, kidneys, nerves and blood vessels.
Persons with diabetes are prone to infection, delayed healing, and vascular disease. The ease with which poorly controlled diabetic persons develop an infection is thought to be due in part to decreased chemotaxis of leukocytes, abnormal phagocyte function, and diminished blood supply because of atherosclerotic changes in the blood vessels. An impaired blood supply means a deficit in the protective defensive cells transported in the blood. Excessive glucose allows organisms to grow out of control.

Poor vision, limited manual dexterity due to arthritis, tremor, or stroke, or other physical limitations may make monitoring blood glucose levels more difficult for older people. However, special monitors are available. Some have large numerical displays that are easier to read. Some provide audible instructions and results. Some monitors read blood glucose levels through the skin and do not require a blood sample. People can consult a diabetes educator to determine which meter is most appropriate.


^ Jump up to: a b c d Inzucchi, SE; Bergenstal, RM; Buse, JB; Diamant, M; Ferrannini, E; Nauck, M; Peters, AL; Tsapas, A; Wender, R; Matthews, DR (March 2015). "Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes". Diabetologia. 58 (3): 429–42. doi:10.1007/s00125-014-3460-0. PMID 25583541.

Most people with diabetes should keep a record of their blood glucose levels and report them to their doctor or nurse for advice in adjusting the dose of insulin or the oral antihyperglycemic drug. Many people can learn to adjust the insulin dose on their own as necessary. Some people who have mild or early type 2 diabetes that is well-controlled with one or two drugs may be able to monitor their fingerstick glucose levels relatively infrequently.


a chronic metabolic disorder in which the use of carbohydrate is impaired and that of lipid and protein is enhanced. It is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma. Long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection.
1. Monitoring of blood glucose status. In the past, urine testing was an integral part of the management of diabetes, but it has largely been replaced in recent years by self monitoring of blood glucose. Reasons for this are that blood testing is more accurate, glucose in the urine shows up only after the blood sugar level is high, and individual renal thresholds vary greatly and can change when certain medications are taken. As a person grows older and the kidney is less able to eliminate sugar in the urine, the renal threshold rises and less sugar is spilled into the urine. The position statement of the American Diabetes Association on Tests of Glycemia in Diabetes notes that urine testing still plays a role in monitoring in type 1 and gestational diabetes, and in pregnancy with pre-existing diabetes, as a way to test for ketones. All people with diabetes should test for ketones during times of acute illness or stress and when blood glucose levels are consistently elevated.
Diabetes mellitus is a group of metabolic diseases characterized by high blood sugar (glucose) levels that result from defects in insulin secretion, or its action, or both. Diabetes mellitus, commonly referred to as diabetes (as it will be in this article) was first identified as a disease associated with "sweet urine," and excessive muscle loss in the ancient world. Elevated levels of blood glucose (hyperglycemia) lead to spillage of glucose into the urine, hence the term sweet urine.
After a diagnosis of diabetes mellitus has been made, and treatment with insulin therapy has begun, a so-called ‘honeymoon stage’ may develop. This stage is characterised by a reduction in insulin requirements which may last from weeks to months. Some patients may require no insulin at all. This stage is always transient (short-lasting) and is due to production of insulin by the remaining surviving pancreatic beta cells. Eventually, these cells will be destroyed by the on-going auto-immune process, and the patient will be dependent on exogenous (artificial) insulin.
^ Jump up to: a b c d Inzucchi, SE; Bergenstal, RM; Buse, JB; Diamant, M; Ferrannini, E; Nauck, M; Peters, AL; Tsapas, A; Wender, R; Matthews, DR (March 2015). "Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a Position Statement of the American Diabetes Association and the European Association for the Study of Diabetes". Diabetologia. 58 (3): 429–42. doi:10.1007/s00125-014-3460-0. PMID 25583541.
According to the American Diabetes Association, a child has a 1 in 7 risk of getting type 2 diabetes if his/her parent was diagnosed with type 2 diabetes before the age of 50, and a 1 in 13 risk of developing it if the parent was diagnosed after the age of 50. To see if you may be at risk for diabetes, consider taking this short and simple Type 2 Diabetes Risk Test from the ADA.
Low blood sugar (hypoglycemia). If your blood sugar level drops below your target range, it's known as low blood sugar (hypoglycemia). Your blood sugar level can drop for many reasons, including skipping a meal, inadvertently taking more medication than usual or getting more physical activity than normal. Low blood sugar is most likely if you take glucose-lowering medications that promote the secretion of insulin or if you're taking insulin.
Symptoms of type 1 diabetes can start quickly, in a matter of weeks. Symptoms of type 2 diabetes often develop slowly—over the course of several years—and can be so mild that you might not even notice them. Many people with type 2 diabetes have no symptoms. Some people do not find out they have the disease until they have diabetes-related health problems, such as blurred vision or heart trouble.
Jock itch is an itchy red rash that appears in the groin area. The rash may be caused by a bacterial or fungal infection. People with diabetes and those who are obese are more susceptible to developing jock itch. Antifungal shampoos, creams, and pills may be needed to treat fungal jock itch. Bacterial jock itch may be treated with antibacterial soaps and topical and oral antibiotics.
^ Jump up to: a b c d GBD 2015 Disease and Injury Incidence and Prevalence, Collaborators. (8 October 2016). "Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015". The Lancet. 388 (10053): 1545–1602. doi:10.1016/S0140-6736(16)31678-6. PMC 5055577. PMID 27733282.
So what determines where fat is stored, and thus a person's propensity for insulin resistance and type 2 diabetes? Well, just having more fat in the body increases the risk that some of it will get misplaced. But exercise may also have a role in fat placement. Exercise is known to reduce insulin resistance; one way it may do this is by burning fat out of the muscle. Because of this, getting enough exercise may stave off type 2 in some cases. Genes may also help orchestrate the distribution of fat in the body, which illustrates how lifestyle and genetics interact.
But the 2015-2020 Dietary Guidelines recommend keeping added sugar below 10 percent of your overall daily caloric intake. And the American Heart Association suggests consuming no more than 9 teaspoons (tsp) — equal to 36 grams (g) or 150 calories — of added sugar if you're a man, and 6 tsp — equal to 25 g or 100 calories — if you're a woman. "Naturally occurring sugars don't count in these recommendations," notes Grieger, which means you should worry less about those sugars in fruits and veggies, for instance, than you should about those in processed fare.
The body obtains glucose from three main sources: the intestinal absorption of food; the breakdown of glycogen (glycogenolysis), the storage form of glucose found in the liver; and gluconeogenesis, the generation of glucose from non-carbohydrate substrates in the body.[60] Insulin plays a critical role in balancing glucose levels in the body. Insulin can inhibit the breakdown of glycogen or the process of gluconeogenesis, it can stimulate the transport of glucose into fat and muscle cells, and it can stimulate the storage of glucose in the form of glycogen.[60]
The American Diabetes Association sponsored an international panel in 1995 to review the literature and recommend updates of the classification of diabetes mellitus. The definitions and descriptions that follow are drawn from the Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. The report was first approved in 1997 and modified in 1999. Although other terms are found in older literature and remain in use, their use in current clinical practice is inappropriate. Epidemiologic and research studies are facilitated by use of a common language.

In 2013, of the estimated 382 million people with diabetes globally, more than 80 per cent lived in LMIC. It was estimated that India had 65.1 million adults with diabetes in 2013, and had the 2nd position among the top 10 countries with the largest number of diabetes. This number is predicted to increase to 109 million by 2035 unless steps are taken to prevent new cases of diabetes1. Primary prevention of diabetes is feasible and strategies such as lifestyle modification are shown to be effective in populations of varied ethnicity2,3. However, for implementation of the strategies at the population level, national programmes which are culturally and socially acceptable and practical have to be formulated which are currently lacking in most of the developed and developing countries. Early diagnosis and institution of appropriate therapeutic measures yield the desired glycaemic outcomes and prevent the vascular complications4.
In Japan, China, and other Asian countries, the transition from traditional carbohydrate-rich (e.g., rice-based) diets to lower-carbohydrate Westernized eating habits emphasizing meats, dairy products, and fried foods has been accompanied by a major increase in diabetes prevalence. Similarly, in the United States, a meat-based (omnivorous) diet is associated with a high prevalence of diabetes, compared with dietary patterns emphasizing plant-derived foods. In the Adventist Health Study-2, after adjusting for differences in body weight, physical activity, and other factors, an omnivorous diet was associated with roughly double the risk of diabetes, compared with a diet omitting animal products.5
Awareness about the signs and symptoms and periodic screening especially in the presence of risk factors and warning signs of diabetes, would go a long way in preventing new cases of diabetes by providing an opportunity to intervene at the stage of prediabetes. It is evident that diabetes can be prevented among prediabetic individuals by improvements in physical activity and diet habits. Such strategies will also prevent development of diabetic complications to a great extent. Patient empowerment is vital in diabetes management. This can be done through patient education and sharing information on management and preventive aspects of diabetes.

Jump up ^ Boussageon, R; Supper, I; Bejan-Angoulvant, T; Kellou, N; Cucherat, M; Boissel, JP; Kassai, B; Moreau, A; Gueyffier, F; Cornu, C (2012). Groop, Leif, ed. "Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials". PLOS Medicine. 9 (4): e1001204. doi:10.1371/journal.pmed.1001204. PMC 3323508. PMID 22509138.
If genetics has taught us anything about diabetes, it's that, for most people, genes aren't the whole story. True, a few rare kinds of diabetes—including those collectively called MODY for maturity-onset diabetes of the young—have been traced to defects in a single gene. But for other types of diabetes, hereditary factors are still not well understood.
People who are obese -- more than 20% over their ideal body weight for their height -- are at particularly high risk of developing type 2 diabetes and its related medical problems. Obese people have insulin resistance. With insulin resistance, the pancreas has to work overly hard to produce more insulin. But even then, there is not enough insulin to keep sugars normal.
If sugars in general are not associated with increased diabetes risk, but sodas are, it suggests the possibility that something other than sugar explains this relationship.16 Sodas are often accompanied by cheeseburgers, chicken nuggets, and other unhealthful foods. That is, soda consumption can be a sign of a diet focusing on fast foods or an overall unhealthful diet and lifestyle. And sugary snack foods (e.g., cookies and snack pastries) are often high in fat; the sugar lures us in to the fat calories hiding inside. Some, but not all, observational trials have sought to control for these confounding variables. 
Low glycemic index foods also may be helpful. The glycemic index is a measure of how quickly a food causes a rise in your blood sugar. Foods with a high glycemic index raise your blood sugar quickly. Low glycemic index foods may help you achieve a more stable blood sugar. Foods with a low glycemic index typically are foods that are higher in fiber.
Type 2 diabetes is different. A person with type 2 diabetes still produces insulin but the body doesn't respond to it normally. Glucose is less able to enter the cells and do its job of supplying energy (a problem called insulin resistance). This raises the blood sugar level, so the pancreas works hard to make even more insulin. Eventually, this strain can make the pancreas unable to produce enough insulin to keep blood sugar levels normal.
Type 2 diabetes is a preventable disease that affects more than 9 percent of the U.S. population, or about 29 million people. According to the Centers for Disease Control and Prevention, more than a quarter — some 8 million people — remain undiagnosed. With complications including nerve damage, kidney damage, poor blood circulation, and even death, it’s important for us all to know the early signs of type 2 diabetes.
×