There is no single gene that “causes” type 1 diabetes. Instead, there are a large number of inherited factors that may increase an individual’s likelihood of developing diabetes. This is known as multifactorial inheritance. The genes implicated in the development of type 1 diabetes mellitus control the human leukocyte antigen (HLA) system. This system is involved in the complex process of identifying cells which are a normal part of the body, and distinguishing them from foreign cells, such as those of bacteria or viruses. In an autoimmune disease such as diabetes mellitus, this system makes a mistake in identifying the normal ‘self’ cells as ‘foreign’, and attacks the body.  
It is clearly established that diabetes mellitus is not a single disease but a genetically heterogeneous group of disorders that share glucose intolerance in common (4–7). The concept of genetic heterogeneity (i.e. that different genetic and/or environmental etiologic factors can result in similar phenotypes) has significantly altered the genetic analysis of this common disorder. Diabetes and glucose intolerance are not diagnostic terms, but, like anemia, simply describe symptoms and/or laboratory abnormalities that can have a number of distinct etiologies.
Merck & Co., Inc., Kenilworth, NJ, USA is a global healthcare leader working to help the world be well. From developing new therapies that treat and prevent disease to helping people in need, we are committed to improving health and well-being around the world. The Merck Manual was first published in 1899 as a service to the community. The legacy of this great resource continues as the Merck Manual in the US and Canada and the MSD Manual outside of North America. Learn more about our commitment to Global Medical Knowledge.
WELL-CONTROLLED DIABETES MELLITUS: Daily blood sugar abstracted from the records of a patient whose DM is well controlled (hemoglobin A1c=6.4). The average capillary blood glucose level is 104 mg/dL, and the standard deviation is 19. Sixty-five percent of the readings are between 90 and 140 mg/dL; the lowest blood sugar is 67 mg/dL (on April 15) and the highest is about 190 (on March 21).
The good news is that behavior still seems to help shape whether someone with the genetic disposition actually develops type 2—and that changes in diet and exercise can sometimes be enough to ward off the disease. "People sometimes have the misconception that if we say something is genetic, then they can't do anything about preventing diabetes and its complications," says Hanis. But he notes that in a landmark study, lifestyle interventions prevented or delayed type 2 in nearly 60 percent of people at high risk. "If we focus on changing the environment, we can prevent diabetes," he says. "As we understand the genetics, we can prevent more of it."
Some cases of diabetes are caused by the body's tissue receptors not responding to insulin (even when insulin levels are normal, which is what separates it from type 2 diabetes); this form is very uncommon. Genetic mutations (autosomal or mitochondrial) can lead to defects in beta cell function. Abnormal insulin action may also have been genetically determined in some cases. Any disease that causes extensive damage to the pancreas may lead to diabetes (for example, chronic pancreatitis and cystic fibrosis). Diseases associated with excessive secretion of insulin-antagonistic hormones can cause diabetes (which is typically resolved once the hormone excess is removed). Many drugs impair insulin secretion and some toxins damage pancreatic beta cells. The ICD-10 (1992) diagnostic entity, malnutrition-related diabetes mellitus (MRDM or MMDM, ICD-10 code E12), was deprecated by the World Health Organization (WHO) when the current taxonomy was introduced in 1999.[53]
Pre-clinical diabetes refers to the time during which destruction of pancreatic insulin-producing cells is occurring, but symptoms have not yet developed. This period may last for months to years. Normally, 80-90% of the pancreatic beta cells must be destroyed before any symptoms of diabetes develops. During this time, blood tests can identify some immunological markers of pancreatic cell destruction. However, there is currently no known treatment to prevent progression of pre-clinical diabetes to true diabetes mellitus.
Which came first: the diabetes or the PCOS? For many women, a diagnosis of polycystic ovary syndrome means a diabetes diagnosis isn’t far behind. PCOS and diabetes are both associated with insulin resistance, meaning there are similar hormonal issues at play in both diseases. Fortunately, managing your PCOS and losing weight may help reduce your risk of becoming diabetic over time.

The classic symptoms of diabetes such as polyuria, polydypsia and polyphagia occur commonly in type 1 diabetes, which has a rapid development of severe hyperglycaemia and also in type 2 diabetes with very high levels of hyperglycaemia. Severe weight loss is common only in type 1 diabetes or if type 2 diabetes remains undetected for a long period. Unexplained weight loss, fatigue and restlessness and body pain are also common signs of undetected diabetes. Symptoms that are mild or have gradual development could also remain unnoticed.


A random blood sugar of greater than 11.1 mmol/l (200 mg/dl) in association with typical symptoms[23] or a glycated hemoglobin (HbA1c) of ≥ 48 mmol/mol (≥ 6.5 DCCT %) is another method of diagnosing diabetes.[10] In 2009 an International Expert Committee that included representatives of the American Diabetes Association (ADA), the International Diabetes Federation (IDF), and the European Association for the Study of Diabetes (EASD) recommended that a threshold of ≥ 48 mmol/mol (≥ 6.5 DCCT %) should be used to diagnose diabetes.[48] This recommendation was adopted by the American Diabetes Association in 2010.[49] Positive tests should be repeated unless the person presents with typical symptoms and blood sugars >11.1 mmol/l (>200 mg/dl).[48]

High blood sugar levels (hyperglycemia) can lead to a condition called glucose toxicity. This leads to further damage to the pancreas, and the body is less able to produce insulin. Without insulin, glucose levels continue to rise to levels that can cause damage to organs such as the eyes, nerves, and kidneys. These problems are similar to the complications associated with type 1 diabetes.
Louis B. Malinow, MD is an MDVIP-affiliated physician that's been practicing in Baltimore for more than 20 years. He's board certified in Internal Medicine, a certified Hypertension Specialist and a Diplomate of the American Board of Clinical Lipidology. Dr. Malinow graduated from the University of Maryland School of Medicine and completed his residency at Stanford University Hospital in Stanford, CA. Dr. Malinow is one of the only physicians in Maryland that specializes in both high blood pressure and high cholesterol management. He is also a member of the prestigious Alpha Omega Alpha medical honor society and is recognized by Best Doctors and Top Doctor by U.S. News & World Report and Baltimore Magazine. Dr. Malinow has appeared on numerous news programs advocating for preventive care and wellness.
There are a range of different symptoms in people with diabetes. They may feel thirsty, pass a large amount of urine, wake up overnight to pass urine, lose weight and have blurred vision. Patients are vulnerable to infections such as thrush and may present with this. Particularly in type 2 diabetes, patients may not be aware of their diabetes for several years and a diagnosis may only be made when they seek treatment for diabetes-related complications such as foot, eye or kidney problems. Some patients may become severely ill and be taken into hospital with an infection and/or very high blood sugar levels.
Risk factors for type 2 diabetes include obesity, high cholesterol, high blood pressure, and physical inactivity. The risk of developing type 2 diabetes also increases as people grow older. People who are over 40 and overweight are more likely to develop type 2 diabetes, although the incidence of this type of diabetes in adolescents is growing. Diabetes is more common among Native Americans, African Americans, Hispanic Americans and Asian Americans/Pacific Islanders. Also, people who develop diabetes while pregnant (a condition called gestational diabetes) are more likely to develop type 2 diabetes later in life.
Clear evidence suggests a genetic component in type 1 diabetes mellitus. Monozygotic twins have a 60% lifetime concordance for developing type 1 diabetes mellitus, although only 30% do so within 10 years after the first twin is diagnosed. In contrast, dizygotic twins have only an 8% risk of concordance, which is similar to the risk among other siblings.
Managing your blood glucose, blood pressure, and cholesterol, and quitting smoking if you smoke, are important ways to manage your type 2 diabetes. Lifestyle changes that include planning healthy meals, limiting calories if you are overweight, and being physically active are also part of managing your diabetes. So is taking any prescribed medicines. Work with your health care team to create a diabetes care plan that works for you.

Although some people with this type of diabetes are thin, the majority of people (90%) are overweight. Losing weight, even 2 kg to 5 kg (5 lbs to 10 lbs) can help lower blood glucose levels. For many people, following a healthy diet and an exercise program may be all that is needed to help control glucose levels. For others, healthy eating and exercise alone aren't enough to lower blood glucose levels.
Persons with diabetes who take insulin must be careful about indulging in unplanned exercise. Strenuous physical activity can rapidly lower their blood sugar and precipitate a hypoglycemic reaction. For a person whose blood glucose level is over 250 mg/dl, the advice would be not to exercise at all. At this range, the levels of insulin are too low and the body would have difficulty transporting glucose into exercising muscles. The result of exercise would be a rise in blood glucose levels.
Of course, you’re exhausted every now and then. But ongoing fatigue is an important symptom to pay attention to; it might mean the food you’re eating for energy isn’t being broken down and used by cells as it’s supposed to. “You’re not getting the fuel your body needs,” says Dobbins. “You’re going to be tired and feel sluggish.” But in many cases of type 2 diabetes, your sugar levels can be elevated for awhile, so these diabetes symptoms could come on slowly.

Since cardiovascular disease is a serious complication associated with diabetes, some have recommended blood pressure levels below 130/80 mmHg.[89] However, evidence supports less than or equal to somewhere between 140/90 mmHg to 160/100 mmHg; the only additional benefit found for blood pressure targets beneath this range was an isolated decrease in stroke risk, and this was accompanied by an increased risk of other serious adverse events.[90][91] A 2016 review found potential harm to treating lower than 140 mmHg.[92] Among medications that lower blood pressure, angiotensin converting enzyme inhibitors (ACEIs) improve outcomes in those with DM while the similar medications angiotensin receptor blockers (ARBs) do not.[93] Aspirin is also recommended for people with cardiovascular problems, however routine use of aspirin has not been found to improve outcomes in uncomplicated diabetes.[94]


No single environmental trigger has been identified as causing diabetes mellitus, however both infectious agents and dietary factors are thought to be important. Various viruses have been implicated in the development of type I DM. They may act by initiating or modifying the autoimmune process. In particular, the rubella virus and coxsackie viruses have been closely studied. In particular, congenital rubella infection has shown direct relationships with the development of type 1 diabetes mellitus. This is presumably due to the virus (or antibodies against it) damaging the beta cells of the pancreas. Some research has looked at dietary factors that may be associated with type 1 diabetes. In particular, cow’s milk proteins (such as bovine serum albumin) which may have some similarities to pancreatic islet cell markers may be able to trigger the autoimmune process. Other chemicals including nitrosamines have been identified as causes of diabetes mellitus in animal models, but not in humans.
The ketogenic, or keto, diet calls for dramatically increasing your fat intake and consuming a moderate amount of protein and a very low amount of carbs, with the aim of kicking your body into a natural metabolic state called ketosis, in which it relies on burning fat rather than carbs for energy. Ketosis is different from diabetic ketoacidosis, a health emergency that occurs when insulin levels are low in conjunction with high levels of ketones. (37) Ketones are by-products of metabolism that are released in the blood when carb intake is low.
The amount of glucose in the bloodstream is tightly regulated by insulin and other hormones. Insulin is always being released in small amounts by the pancreas. When the amount of glucose in the blood rises to a certain level, the pancreas will release more insulin to push more glucose into the cells. This causes the glucose levels in the blood (blood glucose levels) to drop.

Because people with type 2 diabetes produce some insulin, ketoacidosis does not usually develop even when type 2 diabetes is untreated for a long time. Rarely, the blood glucose levels become extremely high (even exceeding 1,000 mg/dL). Such high levels often happen as the result of some superimposed stress, such as an infection or drug use. When the blood glucose levels get very high, people may develop severe dehydration, which may lead to mental confusion, drowsiness, and seizures, a condition called hyperosmolar hyperglycemic state. Currently, many people with type 2 diabetes are diagnosed by routine blood glucose testing before they develop such severely high blood glucose levels.
Diabetes is a condition in which the body cannot properly store and use fuel for energy. The body's main fuel is a form of sugar called glucose, which comes from food (after it has been broken down). Glucose enters the blood and is used by cells for energy. To use glucose, the body needs a hormone called insulin that's made by the pancreas. Insulin is important because it allows glucose to leave the blood and enter the body's cells.
History of diabetes: Past treatments and new discoveries Diabetes has been known for at least 2,000 years. Over the years, treatments have included exercise, riding on horseback, drinking wine, consuming milk or rice, opium, and overfeeding. It was not until 1921 that insulin was introduced as a treatment. Science has progressed, but diabetes remains a major health problem. Read now
Jump up ^ O'Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX, Anderson JL, Jacobs AK, Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Yancy CW (January 2013). "2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines". Circulation. 127 (4): e362–425. doi:10.1161/CIR.0b013e3182742cf6. PMID 23247304.

Diabetes mellitus, or simply diabetes, is a group of diseases in which a person does not produce enough insulin, or because it does not respond to the insulin that is produced. Insulin is a hormone that controls the amount of glucose (sugar) in the blood. Diabetes leads to high blood sugar levels, which can lead to damage of blood vessels, organs, and nerves.
Maturity onset diabetes of the young (MODY) is a rare autosomal dominant inherited form of diabetes, due to one of several single-gene mutations causing defects in insulin production.[52] It is significantly less common than the three main types. The name of this disease refers to early hypotheses as to its nature. Being due to a defective gene, this disease varies in age at presentation and in severity according to the specific gene defect; thus there are at least 13 subtypes of MODY. People with MODY often can control it without using insulin.
Endocrinology is the specialty of medicine that deals with hormone disturbances, and both endocrinologists and pediatric endocrinologists manage patients with diabetes. People with diabetes may also be treated by family medicine or internal medicine specialists. When complications arise, people with diabetes may be treated by other specialists, including neurologists, gastroenterologists, ophthalmologists, surgeons, cardiologists, or others.
The amount of glucose in the bloodstream is tightly regulated by insulin and other hormones. Insulin is always being released in small amounts by the pancreas. When the amount of glucose in the blood rises to a certain level, the pancreas will release more insulin to push more glucose into the cells. This causes the glucose levels in the blood (blood glucose levels) to drop.
Cataracts and glaucoma are also more common among diabetics. It is also important to note that since the lens of the eye lets water through, if blood sugar concentrations vary a lot, the lens of the eye will shrink and swell with fluid accordingly. As a result, blurry vision is very common in poorly controlled diabetes. Patients are usually discouraged from getting a new eyeglass prescription until their blood sugar is controlled. This allows for a more accurate assessment of what kind of glasses prescription is required.
2.Retinopathy - Diabetes may cause blood vessels in the retina (the light sensitive lining of the eye) to become leaky, blocked, or grow abnormally [Figure 1]. Retinopathy is rare before the age of 10 and the risk increases with the length of time a person has diabetes. Treatments such as laser, injections in the eye, or other procedures may be helpful to prevent visual loss or restore sight. The longer a patient has diabetes, the greater chance of developing an eye problem.  All patients with diabetes are at risk for developing retinopathy, but the risk is higher for patients with worse blood sugar control.  Early retinopathy may have no symptoms, but early treatment is essential to prevent any loss of vision.

DM is a strong independent predictor of short- and long-term recurrent ischemic events, including mortality, in acute coronary syndrome (ACS),6,7 including unstable angina and non-ST-elevation MI (NSTEMI),8 ST-elevation MI (STEMI) treated medically,9 and ACS undergoing percutaneous coronary intervention (PCI).10,11 Furthermore, the concomitant presence of cardiovascular risk factors and comorbidities that negatively affect the outcomes of ACS is higher in DM patients.12
Different environmental effects on type 1 diabetes mellitus development complicate the influence of race, but racial differences are evident. Whites have the highest reported incidence, whereas Chinese individuals have the lowest. Type 1 diabetes mellitus is 1.5 times more likely to develop in American whites than in American blacks or Hispanics. Current evidence suggests that when immigrants from an area with low incidence move to an area with higher incidence, their rates of type 1 diabetes mellitus tend to increase toward the higher level.
Diabetes mellitus is not a single disorder but a heterogeneous group of disorders. All forms are characterized by hyperglycemia and disturbances of carbohydrate, fat, and protein metabolism which are associated with absolute or relative deficiencies of insulin action and/or insulin secretion. The World Health Organization (WHO) developed a now widely accepted classification of the disorder, largely based on clinical characteristics (see Table 1, WHO, 1985).
Glucose is vital to your health because it's an important source of energy for the cells that make up your muscles and tissues. It's also your brain's main source of fuel. If you have diabetes, no matter what type, it means you have too much glucose in your blood, although the causes may differ. Too much glucose can lead to serious health problems.
×