Visual impairment and blindness are common sequelae of uncontrolled diabetes. The three most frequently occurring problems involving the eye are diabetic retinopathy, cataracts, and glaucoma. photocoagulation of destructive lesions of the retina with laser beams can be used to delay further progress of pathologic changes and thereby preserve sight in the affected eye.
nephrogenic diabetes insipidus a rare form caused by failure of the renal tubules to reabsorb water; there is excessive production of antidiuretic hormone but the tubules fail to respond to it. Characteristics include polyuria, extreme thirst, growth retardation, and developmental delay. The condition does not respond to exogenous vasopressin. It may be inherited as an X-linked trait or be acquired as a result of drug therapy or systemic disease.
You are more likely to develop type 2 diabetes if you are not physically active and are overweight or obese. Extra weight sometimes causes insulin resistance and is common in people with type 2 diabetes. The location of body fat also makes a difference. Extra belly fat is linked to insulin resistance, type 2 diabetes, and heart and blood vessel disease. To see if your weight puts you at risk for type 2 diabetes, check out these Body Mass Index (BMI) charts.
Patients with type 2 diabetes can still make insulin, but not enough to control their glucose levels. Type 2 diabetes is therefore initially treated with a combination of lifestyle changes (diet and exercise) which reduce the need for insulin and therefore lower glucose levels. If this is insufficient to achieve good glucose control, a range of tablets are available. These include metformin and pioglitazone, which, like diet and exercise, reduce insulin requirements; sulphonylureas (e.g. gliclazide), which stimulate insulin secretion; DPP4 inhibitors (e.g sitagliptin) and GLP-1 agonists (e.g. liraglutide), which stimulate insulin production and reduce appetite; and SGLT2 inhibitors (e.g. dapagliflozin), which lower blood sugar levels by causing sugar to pass out of the body in the urine. In many patients, particularly after several years of treatment, insulin production is so low or so insufficient compared with the patient's needs that patients with type 2 diabetes have to be treated with insulin injections, either alone or in combination with tablets.
Morbidity and mortality stem from the metabolic derangements and from the long-term complications that affect small and large vessels, resulting in retinopathy, nephropathy, neuropathy, ischemic heart disease, and arterial obstruction with gangrene of extremities.2 The acute clinical manifestations can be fully understood in the context of current knowledge of the secretion and action of insulin.3 Genetic and other etiologic considerations implicate autoimmune mechanisms in the evolution of the most common form of childhood diabetes, known as type 1a diabetes.4,5 Genetic defects in insulin secretion are increasingly recognized and understood as defining the causes of monogenic forms of diabetes such as maturity-onset diabetes of youth (MODY) and neonatal DM and contributing to the spectrum of T2DM.6

Sequelae. The long-term consequences of diabetes mellitus can involve both large and small blood vessels throughout the body. That in large vessels is usually seen in the coronary arteries, cerebral arteries, and arteries of the lower extremities and can eventually lead to myocardial infarction, stroke, or gangrene of the feet and legs. atherosclerosis is far more likely to occur in persons of any age who have diabetes than it is in other people. This predisposition is not clearly understood. Some believe that diabetics inherit the tendency to develop severe atherosclerosis as well as an aberration in glucose metabolism, and that the two are not necessarily related. There is strong evidence to substantiate the claim that optimal control will mitigate the effects of diabetes on the microvasculature, particularly in the young and middle-aged who are at greatest risk for developing complications involving the arterioles. Pathologic changes in the small blood vessels serving the kidney lead to nephrosclerosis, pyelonephritis, and other disorders that eventually result in renal failure. Many of the deaths of persons with type 1 diabetes are caused by renal failure.
Maturity onset diabetes of the young (MODY) is a rare autosomal dominant inherited form of diabetes, due to one of several single-gene mutations causing defects in insulin production.[52] It is significantly less common than the three main types. The name of this disease refers to early hypotheses as to its nature. Being due to a defective gene, this disease varies in age at presentation and in severity according to the specific gene defect; thus there are at least 13 subtypes of MODY. People with MODY often can control it without using insulin.
The genes identified so far in people with type 2 include many that affect the insulin-producing beta cells of the pancreas, says Craig Hanis, PhD, a professor at the Human Genetics Center at the University of Texas Health Science Center in Houston. And yet he emphasizes that why people get type 2 isn't at all clear yet: "What it tells us is that diabetes is a complicated disease."
It is also important to note that currently one third of those who have IGT are in the productive age between 20-39 yr and, therefore, are likely to spend many years at high risk of developing diabetes and/or complications of diabetes1. Some persons with prediabetes experience reactive hypoglycaemia 2-3 hours after a meal. This is a sign of impaired insulin metabolism indicative of impending occurrence of diabetes. Therefore, periodic medical check-up in people with such signs or risk factors for diabetes would reduce the hazards involved in having undiagnosed diabetes. It would help improve the health status of a large number of people who otherwise would be silent sufferers from the metabolic aberrations associated with diabetes.

Type 2 diabetes occurs when the pancreas does not make enough insulin or the body does not use insulin properly. It usually occurs in adults, although in some cases children may be affected. People with type 2 diabetes usually have a family history of this condition and 90% are overweight or obese. People with type 2 diabetes may eventually need insulin injections. This condition occurs most commonly in people of Indigenous and African descent, Hispanics, and Asians.

A proper diet and exercise are the foundations of diabetic care,[23] with a greater amount of exercise yielding better results.[80] Exercise improves blood sugar control, decreases body fat content and decreases blood lipid levels, and these effects are evident even without weight loss.[81] Aerobic exercise leads to a decrease in HbA1c and improved insulin sensitivity.[82] Resistance training is also useful and the combination of both types of exercise may be most effective.[82]

Oral glucose tolerance test (OGTT): With this test you will be required to fast for at least 8 hours and then are given a drink with 75 g of carbohydrate. Your blood glucose is checked at fasting and then 2 hours after drinking the solution. If your blood glucose is 11.1 mmol/L or higher, your doctor may diagnose diabetes. If your blood glucose 2 hours after drinking the solution is between 7.8 to 11.1 mmol/L, your doctor may diagnose prediabetes. This is the preferred method to test for gestational diabetes.

observations The onset of type 1 diabetes mellitus is sudden in children. Type 2 diabetes often begins insidiously. Characteristically the course is progressive and includes polyuria, polydipsia, weight loss, polyphagia, hyperglycemia, and glycosuria. The eyes, kidneys, nervous system, skin, and circulatory system may be affected by the long-term complications of either type of diabetes; infections are common; and atherosclerosis often develops. In type 1 diabetes mellitus, when no endogenous insulin is being secreted, ketoacidosis is a constant danger. The diagnosis is confirmed by fasting plasma glucose and history.
Management of type 2 diabetes focuses on lifestyle interventions, lowering other cardiovascular risk factors, and maintaining blood glucose levels in the normal range.[24] Self-monitoring of blood glucose for people with newly diagnosed type 2 diabetes may be used in combination with education,[70] however the benefit of self monitoring in those not using multi-dose insulin is questionable.[24][71] In those who do not want to measure blood levels, measuring urine levels may be done.[70] Managing other cardiovascular risk factors, such as hypertension, high cholesterol, and microalbuminuria, improves a person's life expectancy.[24] Decreasing the systolic blood pressure to less than 140 mmHg is associated with a lower risk of death and better outcomes.[72] Intensive blood pressure management (less than 130/80 mmHg) as opposed to standard blood pressure management (less than 140-160 mmHg systolic to 85–100 mmHg diastolic) results in a slight decrease in stroke risk but no effect on overall risk of death.[73]

DM affects at least 16 million U.S. residents, ranks seventh as a cause of death in the United States, and costs the national economy over $100 billion yearly. The striking increase in the prevalence of DM in the U.S. during recent years has been linked to a rise in the prevalence of obesity. About 95% of those with DM have Type 2, in which the pancreatic beta cells retain some insulin-producing potential, and the rest have Type 1, in which exogenous insulin is required for long-term survival. In Type 1 DM, which typically causes symptoms before age 25, an autoimmune process is responsible for beta cell destruction. Type 2 DM is characterized by insulin resistance in peripheral tissues as well as a defect in insulin secretion by beta cells. Insulin regulates carbohydrate metabolism by mediating the rapid transport of glucose and amino acids from the circulation into muscle and other tissue cells, by promoting the storage of glucose in liver cells as glycogen, and by inhibiting gluconeogenesis. The normal stimulus for the release of insulin from the pancreas is a rise in the concentration of glucose in circulating blood, which typically occurs within a few minutes after a meal. When such a rise elicits an appropriate insulin response, so that the blood level of glucose falls again as it is taken into cells, glucose tolerance is said to be normal. The central fact in DM is an impairment of glucose tolerance of such a degree as to threaten or impair health. Long recognized as an independent risk factor for cardiovascular disease, DM is often associated with other risk factors, including disorders of lipid metabolism (elevation of very-low-density lipoprotein cholesterol and triglycerides and depression of high-density lipoprotein cholesterol), obesity, hypertension, and impairment of renal function. Sustained elevation of serum glucose and triglycerides aggravates the biochemical defect inherent in DM by impairing insulin secretion, insulin-mediated glucose uptake by cells, and hepatic regulation of glucose output. Long-term consequences of the diabetic state include macrovascular complications (premature or accelerated atherosclerosis with resulting coronary, cerebral, and peripheral vascular insufficiency) and microvascular complications (retinopathy, nephropathy, and neuropathy). It is estimated that half those with DM already have some complications when the diagnosis is made. The American Diabetes Association (ADA) recommends screening for DM for people with risk factors such as obesity, age 45 years or older, family history of DM, or history of gestational diabetes. If screening yields normal results, it should be repeated every 3 years. The diagnosis of DM depends on measurement of plasma glucose concentration. The diagnosis is confirmed when any two measurements of plasma glucose performed on different days yield levels at or above established thresholds: in the fasting state, 126 mg/dL (7 mmol/L); 2 hours postprandially (after a 75-g oral glucose load) or at random, 200 mg/dL (11.1 mmol/L). A fasting plasma glucose of 100-125 mg/dL (5.5-6.9 mmol/L) or a 2-hour postprandial glucose of 140-199 mg/dL (7.8-11 mmol/L) is defined as impaired glucose tolerance. People with impaired glucose tolerance are at higher risk of developing DM within 10 years. For such people, lifestyle modification such as weight reduction and exercise may prevent or postpone the onset of frank DM. Current recommendations for the management of DM emphasize education and individualization of therapy. Controlled studies have shown that rigorous maintenance of plasma glucose levels as near to normal as possible at all times substantially reduces the incidence and severity of long-term complications, particularly microvascular complications. Such control involves limitation of dietary carbohydrate and saturated fat; monitoring of blood glucose, including self-testing by the patient and periodic determination of glycosylated hemoglobin; and administration of insulin (particularly in Type 1 DM), drugs that stimulate endogenous insulin production (in Type 2 DM), or both. The ADA recommends inclusion of healthful carbohydrate-containing foods such as whole grains, fruits, vegetables, and low-fat milk in a diabetic diet. Restriction of dietary fat to less than 10% of total calories is recommended for people with diabetes, as for the general population. Further restriction may be appropriate for those with heart disease or elevated cholesterol or triglyceride levels. The ADA advises that high-protein, low-carbohydrate diets have no particular merit in long-term weight control or in maintenance of a normal plasma glucose level in DM. Pharmaceutical agents developed during the 1990s improve control of DM by enhancing responsiveness of cells to insulin, counteracting insulin resistance, and reducing postprandial carbohydrate absorption. Tailor-made insulin analogues produced by recombinant DNA technology (for example, lispro, aspart, and glargine insulins) have broadened the range of pharmacologic properties and treatment options available. Their use improves both short-term and long-term control of plasma glucose and is associated with fewer episodes of hypoglycemia. SEE ALSO insulin resistance

Type 2 diabetes (T2D) is more common than type 1 diabetes with about 90 to 95 percent of people with diabetes having T2D. According to the Centers for Disease Control and Prevention’s report, 30.3 million Americans, or 9.4% of the US population have diabetes.1 More alarming, an estimated 84 million more American adults have prediabetes, which if not treated, will advance to diabetes within five years.1
Other studies have focused, not on sugar overall but specifically on sodas and other sugar-sweetened beverages. Many have found no significant relationship, apart from sugar’s extra calories that lead to weight gain. For example, the Women’s Health Study,8 the Atherosclerosis Risk in Communities Study,9 the Black Women’s Health Study,10 and the Multi-Ethnic Study of Atherosclerosis found no significant associations between sugar consumption and diabetes risk after adjustment for measures of body weight. Some studies have had mixed results, exonerating sucrose, but indicting glucose and fructose.12,13 And some studies have shown associations between sugar-sweetened beverages and diabetes that persist after adjustment for body weight.14,15

Family or personal history. Your risk increases if you have prediabetes — a precursor to type 2 diabetes — or if a close family member, such as a parent or sibling, has type 2 diabetes. You're also at greater risk if you had gestational diabetes during a previous pregnancy, if you delivered a very large baby or if you had an unexplained stillbirth.