When diabetes occurs in women during pregnancy, it is called gestational diabetes. It usually is diagnosed between the 24th and 28th weeks of pregnancy. Like in type 1 and type 2 diabetes, blood sugar levels become too high. When women are pregnant, more glucose is needed to nourish the developing baby. The body needs more insulin, which is produced by the pancreas. In some women, the body does not produce enough insulin to meet this need, and blood sugar levels rise, resulting in gestational diabetes.
Monogenic diabetes is caused by mutations, or changes, in a single gene. These changes are usually passed through families, but sometimes the gene mutation happens on its own. Most of these gene mutations cause diabetes by making the pancreas less able to make insulin. The most common types of monogenic diabetes are neonatal diabetes and maturity-onset diabetes of the young (MODY). Neonatal diabetes occurs in the first 6 months of life. Doctors usually diagnose MODY during adolescence or early adulthood, but sometimes the disease is not diagnosed until later in life.

So what determines where fat is stored, and thus a person's propensity for insulin resistance and type 2 diabetes? Well, just having more fat in the body increases the risk that some of it will get misplaced. But exercise may also have a role in fat placement. Exercise is known to reduce insulin resistance; one way it may do this is by burning fat out of the muscle. Because of this, getting enough exercise may stave off type 2 in some cases. Genes may also help orchestrate the distribution of fat in the body, which illustrates how lifestyle and genetics interact.
In the exchange system, foods are divided into six food groups (starch, meat, vegetable, fruit, milk, and fat) and the patient is taught to select items from each food group as ordered. Items in each group may be exchanged for each other in specified portions. The patient should avoid concentrated sweets and should increase fiber in the diet. Special dietetic foods are not necessary. Patient teaching should emphasize that a diabetic diet is a healthy diet that all members of the family can follow.
Other studies have focused, not on sugar overall but specifically on sodas and other sugar-sweetened beverages. Many have found no significant relationship, apart from sugar’s extra calories that lead to weight gain. For example, the Women’s Health Study,8 the Atherosclerosis Risk in Communities Study,9 the Black Women’s Health Study,10 and the Multi-Ethnic Study of Atherosclerosis found no significant associations between sugar consumption and diabetes risk after adjustment for measures of body weight. Some studies have had mixed results, exonerating sucrose, but indicting glucose and fructose.12,13 And some studies have shown associations between sugar-sweetened beverages and diabetes that persist after adjustment for body weight.14,15
Jump up ^ Boussageon, R; Supper, I; Bejan-Angoulvant, T; Kellou, N; Cucherat, M; Boissel, JP; Kassai, B; Moreau, A; Gueyffier, F; Cornu, C (2012). Groop, Leif, ed. "Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials". PLOS Medicine. 9 (4): e1001204. doi:10.1371/journal.pmed.1001204. PMC 3323508. PMID 22509138.
Excess glucose in the blood can damage small blood vessels in the nerves causing a tingling sensation or pain in the fingers, toes and limbs. Nerves that lie outside of the central nervous system may also be damaged, which is referred to as peripheral neuropathy. If nerves of the gastrointestinal tract are affected, this may cause vomiting, constipation and diarrhea.
Type 1 and type 2 diabetes were identified as separate conditions for the first time by the Indian physicians Sushruta and Charaka in 400–500 CE with type 1 associated with youth and type 2 with being overweight.[108] The term "mellitus" or "from honey" was added by the Briton John Rolle in the late 1700s to separate the condition from diabetes insipidus, which is also associated with frequent urination.[108] Effective treatment was not developed until the early part of the 20th century, when Canadians Frederick Banting and Charles Herbert Best isolated and purified insulin in 1921 and 1922.[108] This was followed by the development of the long-acting insulin NPH in the 1940s.[108]
If you have type 2 diabetes and your body mass index (BMI) is greater than 35, you may be a candidate for weight-loss surgery (bariatric surgery). Blood sugar levels return to normal in 55 to 95 percent of people with diabetes, depending on the procedure performed. Surgeries that bypass a portion of the small intestine have more of an effect on blood sugar levels than do other weight-loss surgeries.
Accelerated atherosclerosis is the main underlying factor contributing to the high risk of atherothrombotic events in DM patients. CAD, peripheral vascular disease, stroke, and increased intima-media thickness are the main macrovascular complications. Diabetics are 2–4 times more likely to develop stroke than people without DM.2 CVD, particularly CAD, is the leading cause of morbidity and mortality in patients with DM.4 Patients with T2DM have a 2- to 4-fold increase in the risk of CAD, and patients with DM but without previous myocardial infarction (MI) carry the same level of risk for subsequent acute coronary events as nondiabetic patients with previous MI.5 Furthermore, people with diabetes have a poorer long-term prognosis after MI, including an increased risk for congestive heart failure and death.
When the blood glucose level rises above 160 to 180 mg/dL, glucose spills into the urine. When the level of glucose in the urine rises even higher, the kidneys excrete additional water to dilute the large amount of glucose. Because the kidneys produce excessive urine, people with diabetes urinate large volumes frequently (polyuria). The excessive urination creates abnormal thirst (polydipsia). Because excessive calories are lost in the urine, people may lose weight. To compensate, people often feel excessively hungry.
Type 1 and type 2 diabetes were identified as separate conditions for the first time by the Indian physicians Sushruta and Charaka in 400–500 CE with type 1 associated with youth and type 2 with being overweight.[108] The term "mellitus" or "from honey" was added by the Briton John Rolle in the late 1700s to separate the condition from diabetes insipidus, which is also associated with frequent urination.[108] Effective treatment was not developed until the early part of the 20th century, when Canadians Frederick Banting and Charles Herbert Best isolated and purified insulin in 1921 and 1922.[108] This was followed by the development of the long-acting insulin NPH in the 1940s.[108]
Melissa Conrad Stöppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stöppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.
How does type 2 diabetes progress over time? Type 2 diabetes is a progressive disease, meaning that the body’s ability to regulate blood sugar gets worse over time, despite careful management. Over time, the body’s cells become increasingly less responsive to insulin (increased insulin resistance) and beta cells in the pancreas produce less and less insulin (called beta-cell burnout). In fact, when people are diagnosed with type 2 diabetes, they usually have already lost up to 50% or more of their beta cell function. As type 2 diabetes progresses, people typically need to add one or more different types of medications. The good news is that there are many more choices available for treatments, and a number of these medications don’t cause as much hypoglycemia, hunger and/or weight gain (e.g., metformin, pioglitazone, DPP-4 inhibitors, GLP-1 agonists, SGLT-2 inhibitors, and better insulin). Diligent management early on can help preserve remaining beta cell function and sometimes slow progression of the disease, although the need to use more and different types of medications does not mean that you have failed.
As of 2015, an estimated 415 million people had diabetes worldwide,[8] with type 2 DM making up about 90% of the cases.[16][17] This represents 8.3% of the adult population,[17] with equal rates in both women and men.[18] As of 2014, trends suggested the rate would continue to rise.[19] Diabetes at least doubles a person's risk of early death.[2] From 2012 to 2015, approximately 1.5 to 5.0 million deaths each year resulted from diabetes.[8][9] The global economic cost of diabetes in 2014 was estimated to be US$612 billion.[20] In the United States, diabetes cost $245 billion in 2012.[21]
Diabetic ketoacidosis (DKA) is much less common than hypoglycemia but is potentially far more serious, creating a life-threatening medical emergency. [13] Ketosis usually does not occur when insulin is present. In the absence of insulin, however, severe hyperglycemia, dehydration, and ketone production contribute to the development of DKA. The most serious complication of DKA is the development of cerebral edema, which increases the risk of death and long-term morbidity. Very young children at the time of first diagnosis are most likely to develop cerebral edema.
Diabetes has often been referred to as a "silent disease" for two reasons: 1) Many people with Type 2 diabetes walk around with symptoms for many years, but are not diagnosed until they develop a complication of the disease, such as blindness, kidney disease, or heart disease; 2) There are no specific physical manifestations in individuals with diabetes.  Therefore, unless a person chooses to disclose their disease, it is possible that friends and even family members may be unaware of a person's diagnosis.

Glucagon is a hormone that causes the release of glucose from the liver (for example, it promotes gluconeogenesis). Glucagon can be lifesaving and every patient with diabetes who has a history of hypoglycemia (particularly those on insulin) should have a glucagon kit. Families and friends of those with diabetes need to be taught how to administer glucagon, since obviously the patients will not be able to do it themselves in an emergency situation. Another lifesaving device that should be mentioned is very simple; a medic-alert bracelet should be worn by all patients with diabetes.


Low glycemic index foods also may be helpful. The glycemic index is a measure of how quickly a food causes a rise in your blood sugar. Foods with a high glycemic index raise your blood sugar quickly. Low glycemic index foods may help you achieve a more stable blood sugar. Foods with a low glycemic index typically are foods that are higher in fiber.

Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[32][33] The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk.[26] Eating a lot of white rice appears to play a role in increasing risk.[34] A lack of exercise is believed to cause 7% of cases.[35] Persistent organic pollutants may play a role.[36]
Diabetes is a serious and costly disease which is becoming increasingly common, especially in developing countries and disadvantaged minorities. However, there are ways of preventing it and/or controlling its progress. Public and professional awareness of the risk factors for, and symptoms of diabetes are an important step towards its prevention and control.
People with type 1 diabetes and certain people with type 2 diabetes may use carbohydrate counting or the carbohydrate exchange system to match their insulin dose to the carbohydrate content of their meal. "Counting" the amount of carbohydrate in a meal is used to calculate the amount of insulin the person takes before eating. However, the carbohydrate-to-insulin ratio (the amount of insulin taken for each gram of carbohydrate in the meal) varies for each person, and people with diabetes need to work closely with a dietician who has experience in working with people with diabetes to master the technique. Some experts have advised use of the glycemic index (a measure of the impact of an ingested carbohydrate-containing food on the blood glucose level) to delineate between rapid and slowly metabolized carbohydrates, although there is little evidence to support this approach.
Your body is like a car—it needs fuel to function. Its primary source of fuel is glucose (sugar), which is gained from foods that contain carbohydrates that get broken down. Insulin, a hormone produced by the pancreas, takes sugar from your blood to your cells to use for energy. However, when you have diabetes, either your pancreas isn't making enough insulin or the insulin that your body is making isn't being used the way it's supposed to be, typically because the cells become resistant to it.
Type 1 DM is caused by autoimmune destruction of the insulin-secreting beta cells of the pancreas. The loss of these cells results in nearly complete insulin deficiency; without exogenous insulin, type 1 DM is rapidly fatal. Type 2 DM results partly from a decreased sensitivity of muscle cells to insulin-mediated glucose uptake and partly from a relative decrease in pancreatic insulin secretion.
Sasigarn A Bowden, MD Associate Professor of Pediatrics, Section of Pediatric Endocrinology, Metabolism and Diabetes, Department of Pediatrics, Ohio State University College of Medicine; Pediatric Endocrinologist, Associate Fellowship Program Director, Division of Endocrinology, Nationwide Children’s Hospital; Affiliate Faculty/Principal Investigator, Center for Clinical Translational Research, Research Institute at Nationwide Children’s Hospital
When it comes to diabetes, there's no real answer yet. Yes, science has begun to uncover the roots of this disease, unearthing a complex interplay of genes and environment—and a lot more unanswered questions. Meanwhile, there's plenty of misinformation to go around. (How often have you had to explain that diabetes doesn't happen because someone "ate too much"?)

Jump up ^ Boussageon, R; Supper, I; Bejan-Angoulvant, T; Kellou, N; Cucherat, M; Boissel, JP; Kassai, B; Moreau, A; Gueyffier, F; Cornu, C (2012). Groop, Leif, ed. "Reappraisal of metformin efficacy in the treatment of type 2 diabetes: a meta-analysis of randomised controlled trials". PLOS Medicine. 9 (4): e1001204. doi:10.1371/journal.pmed.1001204. PMC 3323508. PMID 22509138.

In 2013, of the estimated 382 million people with diabetes globally, more than 80 per cent lived in LMIC. It was estimated that India had 65.1 million adults with diabetes in 2013, and had the 2nd position among the top 10 countries with the largest number of diabetes. This number is predicted to increase to 109 million by 2035 unless steps are taken to prevent new cases of diabetes1. Primary prevention of diabetes is feasible and strategies such as lifestyle modification are shown to be effective in populations of varied ethnicity2,3. However, for implementation of the strategies at the population level, national programmes which are culturally and socially acceptable and practical have to be formulated which are currently lacking in most of the developed and developing countries. Early diagnosis and institution of appropriate therapeutic measures yield the desired glycaemic outcomes and prevent the vascular complications4.
People with diabetes aim for a hemoglobin A1C level of less than 7%. Achieving this level is difficult, but the lower the hemoglobin A1C level, the less likely people are to have complications. Doctors may recommend a slightly higher or lower target for certain people depending on their particular health situation. However, levels above 9% show poor control, and levels above 12% show very poor control. Most doctors who specialize in diabetes care recommend that hemoglobin A1C be measured every 3 to 6 months.
Jump up ^ Attridge, Madeleine; Creamer, John; Ramsden, Michael; Cannings-John, Rebecca; Hawthorne, Kamila (2014-09-04). "Culturally appropriate health education for people in ethnic minority groups with type 2 diabetes mellitus". Cochrane Database of Systematic Reviews (9): CD006424. doi:10.1002/14651858.CD006424.pub3. ISSN 1469-493X. PMID 25188210.

Ketoacidosis, a condition due to starvation or uncontrolled diabetes, is common in Type I diabetes. Ketones are acid compounds that form in the blood when the body breaks down fats and proteins. Symptoms include abdominal pain, vomiting, rapid breathing, extreme lethargy, and drowsiness. Patients with ketoacidosis will also have a sweet breath odor. Left untreated, this condition can lead to coma and death.


People with type 1 diabetes are unable to produce any insulin at all. People with type 2 diabetes still produce insulin, however, the cells in the muscles, liver and fat tissue are inefficient at absorbing the insulin and cannot regulate glucose well. As a result, the body tries to compensate by having the pancreas pump out more insulin. But the pancreas slowly loses the ability to produce enough insulin, and as a result, the cells don’t get the energy they need to function properly.

Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) refer to levels of blood glucose concentration above the normal range, but below those which are diagnostic for diabetes. Subjects with IGT and/or IFG are at substantially higher risk of developing diabetes and cardiovascular disease than those with normal glucose tolerance. The benefits of clinical intervention in subjects with moderate glucose intolerance is a topic of much current interest.
Hypoglycemic reactions are promptly treated by giving carbohydrates (orange juice, hard candy, honey, or any sugary food); if necessary, subcutaneous or intramuscular glucagon or intravenous dextrose (if the patient is not conscious) is administered. Hyperglycemic crises are treated initially with prescribed intravenous fluids and insulin and later with potassium replacement based on laboratory values.
^ Jump up to: a b Funnell, Martha M.; Anderson, Robert M. (2008). "Influencing self-management: from compliance to collaboration". In Feinglos, Mark N.; Bethel, M. Angelyn. Type 2 diabetes mellitus: an evidence-based approach to practical management. Contemporary endocrinology. Totowa, NJ: Humana Press. p. 462. ISBN 978-1-58829-794-5. OCLC 261324723.
Metformin (Glucophage, Glucophage XR, Glumetza, Fortamet, Riomet) belongs to a class of drugs called biguanides. Metformin is first-line therapy for most type 2 diabetics. It works to stop the liver from making excess glucose, and has a low risk of hypoglycemia. Hypoglycemia, or very low blood sugar can cause symptoms such as sweating, nervousness, heart palpitations, weakness, intense hunger, trembling, and problems speaking. Many patients lose some weight taking metformin, which is also helpful for blood sugar control.
What is type 2 diabetes and prediabetes? Behind type 2 diabetes is a disease where the body’s cells have trouble responding to insulin – this is called insulin resistance. Insulin is a hormone needed to store the energy found in food into the body’s cells. In prediabetes, insulin resistance starts growing and the beta cells in the pancreas that release insulin will try to make even more insulin to make up for the body’s insensitivity. This can go on for a long time without any symptoms. Over time, though, the beta cells in the pancreas will fatigue and will no longer be able to produce enough insulin – this is called “beta burnout.” Once there is not enough insulin, blood sugars will start to rise above normal. Prediabetes causes people to have higher-than-normal blood sugars (and an increased risk for heart disease and stroke). Left unnoticed or untreated, blood sugars continue to worsen and many people progress to type 2 diabetes. After a while, so many of the beta cells have been damaged that diabetes becomes an irreversible condition. 

Our bodies break down the foods we eat into glucose and other nutrients we need, which are then absorbed into the bloodstream from the gastrointestinal tract. The glucose level in the blood rises after a meal and triggers the pancreas to make the hormone insulin and release it into the bloodstream. But in people with diabetes, the body either can't make or can't respond to insulin properly.
Several other signs and symptoms can mark the onset of diabetes although they are not specific to the disease. In addition to the known ones above, they include blurred vision, headache, fatigue, slow healing of cuts, and itchy skin. Prolonged high blood glucose can cause glucose absorption in the lens of the eye, which leads to changes in its shape, resulting in vision changes. Long-term vision loss can also be caused by diabetic retinopathy. A number of skin rashes that can occur in diabetes are collectively known as diabetic dermadromes.[23]

Yes. In fact, being sick can actually make the body need more diabetes medicine. If you take insulin, you might have to adjust your dose when you're sick, but you still need to take insulin. People with type 2 diabetes may need to adjust their diabetes medicines when they are sick. Talk to your diabetes health care team to be sure you know what to do.
If you recognize any of the symptoms, contact your doctor immediately. A simple in-office test for sugar in the urine is used for diagnosis. If that test is positive, then a drop of blood from the fingertip will confirm diabetes. Every day, thousands of adults and children around the world are diagnosed, but many go undetected. Early diagnosis cannot prevent Type 1, but it can head off potentially devastating, even fatal, health concerns.
Because both yeast and bacteria multiply more quickly when blood sugar levels are elevated, women with diabetes are overall at a higher risk of feminine health issues, such as bacterial infections, yeast infections, and vaginal thrush, especially when blood sugar isn't well controlled. And a lack of awareness about having prediabetes or diabetes can make managing blood sugar impossible.
×