Adrenal Disease Chapter Anatomy Chapter Dermatology Chapter Diabetes Mellitus Chapter Examination Chapter Gastroenterology Chapter General Chapter Geriatric Medicine Chapter Growth Disorders Chapter Hematology and Oncology Chapter Hypoglycemic Disorders Chapter Infectious Disease Chapter Metabolic Disorders Chapter Neonatology Chapter Nephrology Chapter Neurology Chapter Obesity Chapter Obstetrics Chapter Ophthalmology Chapter Parathyroid Disease Chapter Pathology and Laboratory Medicine Chapter Pediatrics Chapter Pharmacology Chapter Pituitary Disease Chapter Prevention Chapter Radiology Chapter Sexual Development Chapter Sports Medicine Chapter Surgery Chapter Symptoms Chapter Thyroid Disease Chapter
Clear evidence suggests a genetic component in type 1 diabetes mellitus. Monozygotic twins have a 60% lifetime concordance for developing type 1 diabetes mellitus, although only 30% do so within 10 years after the first twin is diagnosed. In contrast, dizygotic twins have only an 8% risk of concordance, which is similar to the risk among other siblings.
Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar. There is variability in its manifestations, wherein some individuals have only asymptomatic glucose intolerance, while others present acutely with diabetic ketoacidosis, and still others develop chronic complications such as nephropathy, neuropathy, retinopathy, or accelerated atherosclerosis. It is among the most common of chronic disorders, affecting up to 5–10% of the adult population of the Western world. Its prevalence varies over the globe, with certain populations, including some American Indian tribes and the inhabitants of Micronesia and Polynesia, having extremely high rates of diabetes (1,2). The prevalence of diabetes is increasing dramatically and it has been estimated that the worldwide prevalence will increase by more than 50% between the years 2000 and 2030 (3).

Polyuria is defined as an increase in the frequency of urination. When you have abnormally high levels of sugar in your blood, your kidneys draw in water from your tissues to dilute that sugar, so that your body can get rid of it through the urine. The cells are also pumping water into the bloodstream to help flush out sugar, and the kidneys are unable to reabsorb this fluid during filtering, which results in excess urination.
Hyperglycemic hyperosmolar nonketotic syndrome (HHNS). Signs and symptoms of this life-threatening condition include a blood sugar reading higher than 600 mg/dL (33.3 mmol/L), dry mouth, extreme thirst, fever greater than 101 F (38 C), drowsiness, confusion, vision loss, hallucinations and dark urine. Your blood sugar monitor may not be able to give you an exact reading at such high levels and may instead just read "high."
But if you’re struggling with weight loss, eating fewer foods with added sugar and fat can be a step in the right direction for improving your health and potentially reducing your diabetes risk. In fact, if you have been diagnosed with prediabetes, losing just 5 to 7 percent of your body weight can reduce your risk for type 2 diabetes, according to the CDC.
Diabetes is a condition in which the body cannot properly store and use fuel for energy. The body's main fuel is a form of sugar called glucose, which comes from food (after it has been broken down). Glucose enters the blood and is used by cells for energy. To use glucose, the body needs a hormone called insulin that's made by the pancreas. Insulin is important because it allows glucose to leave the blood and enter the body's cells.
It is also important to note that currently one third of those who have IGT are in the productive age between 20-39 yr and, therefore, are likely to spend many years at high risk of developing diabetes and/or complications of diabetes1. Some persons with prediabetes experience reactive hypoglycaemia 2-3 hours after a meal. This is a sign of impaired insulin metabolism indicative of impending occurrence of diabetes. Therefore, periodic medical check-up in people with such signs or risk factors for diabetes would reduce the hazards involved in having undiagnosed diabetes. It would help improve the health status of a large number of people who otherwise would be silent sufferers from the metabolic aberrations associated with diabetes.
It is especially important that persons with diabetes who are taking insulin not skip meals; they must also be sure to eat the prescribed amounts at the prescribed times during the day. Since the insulin-dependent diabetic needs to match food consumption to the available insulin, it is advantageous to increase the number of daily feedings by adding snacks between meals and at bedtime.

Endocrinology is the specialty of medicine that deals with hormone disturbances, and both endocrinologists and pediatric endocrinologists manage patients with diabetes. People with diabetes may also be treated by family medicine or internal medicine specialists. When complications arise, people with diabetes may be treated by other specialists, including neurologists, gastroenterologists, ophthalmologists, surgeons, cardiologists, or others.

So what determines where fat is stored, and thus a person's propensity for insulin resistance and type 2 diabetes? Well, just having more fat in the body increases the risk that some of it will get misplaced. But exercise may also have a role in fat placement. Exercise is known to reduce insulin resistance; one way it may do this is by burning fat out of the muscle. Because of this, getting enough exercise may stave off type 2 in some cases. Genes may also help orchestrate the distribution of fat in the body, which illustrates how lifestyle and genetics interact.
Fatigue and muscle weakness occur because the glucose needed for energy simply is not metabolized properly. Weight loss in type 1 diabetes patients occurs partly because of the loss of body fluid and partly because in the absence of sufficient insulin the body begins to metabolize its own proteins and stored fat. The oxidation of fats is incomplete, however, and the fatty acids are converted into ketone bodies. When the kidney is no longer able to handle the excess ketones the patient develops ketosis. The overwhelming presence of the strong organic acids in the blood lowers the pH and leads to severe and potentially fatal ketoacidosis.

Doctors, pharmacists, and other health-care professionals use abbreviations, acronyms, and other terminology for instructions and information in regard to a patient's health condition, prescription drugs they are to take, or medical procedures that have been ordered. There is no approved this list of common medical abbreviations, acronyms, and terminology used by doctors and other health- care professionals. You can use this list of medical abbreviations and acronyms written by our doctors the next time you can't understand what is on your prescription package, blood test results, or medical procedure orders. Examples include:


Home blood glucose monitoring kits are available so patients with diabetes can monitor their own levels. A small needle or lancet is used to prick the finger and a drop of blood is collected and analyzed by a monitoring device. Some patients may test their blood glucose levels several times during a day and use this information to adjust their doses of insulin.
Type II is considered a milder form of diabetes because of its slow onset (sometimes developing over the course of several years) and because it usually can be controlled with diet and oral medication. The consequences of uncontrolled and untreated Type II diabetes, however, are the just as serious as those for Type I. This form is also called noninsulin-dependent diabetes, a term that is somewhat misleading. Many people with Type II diabetes can control the condition with diet and oral medications, however, insulin injections are sometimes necessary if treatment with diet and oral medication is not working.
People with type 2 diabetes have insulin resistance, which means the body cannot use insulin properly to help glucose get into the cells. In people with type 2 diabetes, insulin doesn’t work well in muscle, fat, and other tissues, so your pancreas (the organ that makes insulin) starts to put out a lot more of it to try and compensate. "This results in high insulin levels in the body,” says Fernando Ovalle, MD, director of the multidisciplinary diabetes clinic at the University of Alabama in Birmingham. This insulin level sends signals to the brain that your body is hungry.
×