The prognosis of diabetes is related to the extent to which the condition is kept under control to prevent the development of the complications described in the preceding sections. Some of the more serious complications of diabetes such as kidney failure and cardiovascular disease, can be life-threatening. Acute complications such as diabetic ketoacidosis can also be life-threatening. As mentioned above, aggressive control of blood sugar levels can prevent or delay the onset of complications, and many people with diabetes lead long and full lives.
The most common test used to diagnose diabetes is the fasting blood glucose. This test measures the glucose levels at a specific moment in time (normal is 80-110 mg/dl). In managing diabetes, the goal is to normalize blood glucose levels. It is generally accepted that by maintaining normalized blood glucose levels, one may delay or even prevent some of the complications associated with diabetes. Measures to manage diabetes include behavioral modification (proper diet, exercise) and drug therapies (oral hypoglycemics, insulin replacement). The choice of therapy prescribed takes into consideration the type and severity of the disease present and patient compliance. The physician may request the patient keep a log of their daily blood glucose measurements, in an effort to better assess therapeutic success. Another commonly obtained test is the hemoglobin A1c (HbA1c), which is a surrogate marker used to assess blood glucose levels over an extended period (2-3 months). This test provides the physician with a good picture of the patient’s glucose levels over time.

central diabetes insipidus a metabolic disorder due to injury of the neurohypophyseal system, which results in a deficient quantity of antidiuretic hormone (ADH or vasopressin) being released or produced, resulting in failure of tubular reabsorption of water in the kidney. As a consequence, there is the passage of a large amount of urine having a low specific gravity, and great thirst; it is often attended by voracious appetite, loss of strength, and emaciation. Diabetes insipidus may be acquired through infection, neoplasm, trauma, or radiation injuries to the posterior lobe of the pituitary gland or it may be inherited or idiopathic.
Type 1 diabetes is considered an autoimmune disease. With an autoimmune disease, your immune system – which helps protect your body from getting sick – is engaged in too little or too much activity. In Type 1 diabetes, beta cells, which are a kind of cell in the pancreas that produces insulin, are destroyed. Our bodies use insulin to take the sugar from carbohydrates we eat and create fuel. With Type 1 diabetes, your body does not produce insulin, and that's why you need to use insulin as part of your treatment.

It is recommended that all people with type 2 diabetes get regular eye examination.[13] There is weak evidence suggesting that treating gum disease by scaling and root planing may result in a small short-term improvement in blood sugar levels for people with diabetes.[79] There is no evidence to suggest that this improvement in blood sugar levels is maintained longer than 4 months.[79] There is also not enough evidence to determine if medications to treat gum disease are effective at lowering blood sugar levels.[79]
Manage mild hypoglycemia by giving rapidly absorbed oral carbohydrate or glucose; for a comatose patient, administer an intramuscular injection of the hormone glucagon, which stimulates the release of liver glycogen and releases glucose into the circulation. Where appropriate, an alternative therapy is intravenous glucose (preferably no more than a 10% glucose solution). All treatments for hypoglycemia provide recovery in approximately 10 minutes. (See Treatment.)
Clear evidence suggests a genetic component in type 1 diabetes mellitus. Monozygotic twins have a 60% lifetime concordance for developing type 1 diabetes mellitus, although only 30% do so within 10 years after the first twin is diagnosed. In contrast, dizygotic twins have only an 8% risk of concordance, which is similar to the risk among other siblings.
Type 2 diabetes typically starts with insulin resistance. That is, the cells of the body resist insulin’s efforts to escort glucose into the cells. What causes insulin resistance? It appears to be caused by an accumulation of microscopic fat particles within muscle and liver cells.4 This fat comes mainly from the diet—chicken fat, beef fat, cheese fat, fish fat, and even vegetable fat. To try to overcome insulin resistance, the pancreas produces extra insulin. When the pancreas can no longer keep up, blood sugar rises. The combination of insulin resistance and pancreatic cell failure leads to type 2 diabetes.
The classic symptoms of diabetes such as polyuria, polydypsia and polyphagia occur commonly in type 1 diabetes, which has a rapid development of severe hyperglycaemia and also in type 2 diabetes with very high levels of hyperglycaemia. Severe weight loss is common only in type 1 diabetes or if type 2 diabetes remains undetected for a long period. Unexplained weight loss, fatigue and restlessness and body pain are also common signs of undetected diabetes. Symptoms that are mild or have gradual development could also remain unnoticed.
Diabetes is a serious and costly disease which is becoming increasingly common, especially in developing countries and disadvantaged minorities. However, there are ways of preventing it and/or controlling its progress. Public and professional awareness of the risk factors for, and symptoms of diabetes are an important step towards its prevention and control.
Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar. It is among the most common of chronic disorders, affecting up to 5–10% of the adult population of the Western world. The prevalence of diabetes is increasing dramatically; it has been estimated that the worldwide prevalence will increase by more than 50% between the years 2000 and 2030 (Wild et al., 2004). It is clearly established that diabetes mellitus is not a single disease, but a genetically heterogeneous group of disorders that share glucose intolerance in common. The concept of genetic heterogeneity (i.e. that different genetic and/or environmental etiologic factors can result in similar phenotypes) has significantly altered the genetic analysis of this common disorder.
A: There are two scenarios to consider here, pregnant patients who have diabetes and pregnant patients who have gestational diabetes. Gestational diabetes describes hyperglycemia discovered during pregnancy. This hyperglycemia often corrects itself after pregnancy, but women who experience gestational diabetes are at higher for developing type-2 diabetes later in life when compared to women who experience no hyperglycemia during pregnancy. Regardless of the type of diabetes a pregnant patient has, her physician will closely monitor her disease and its response to therapy. Proper glucose control is important not only for the health of the mother, but also her developing child.
In people with type 1 diabetes, the symptoms often begin abruptly and dramatically. A serious condition called diabetic ketoacidosis, a complication in which the body produces excess acid, may quickly develop. In addition to the usual diabetes symptoms of excessive thirst and urination, the initial symptoms of diabetic ketoacidosis also include nausea, vomiting, fatigue, and—particularly in children—abdominal pain. Breathing tends to become deep and rapid as the body attempts to correct the blood’s acidity (see Acidosis), and the breath smells fruity and like nail polish remover. Without treatment, diabetic ketoacidosis can progress to coma and death, sometimes very quickly.

When you have Type 2 diabetes, you may start out with something called insulin resistance. This means your cells do not respond well to the insulin you are making. "Insulin levels may be quite high, especially in the early stages of the disease. Eventually, your pancreas may not be able to keep up, and insulin secretion goes down," Rettinger explains. Insulin resistance becomes more common as you put on more weight, especially weight around your belly.
Diabetes experts feel that these blood glucose monitoring devices give patients a significant amount of independence to manage their disease process; and they are a great tool for education as well. It is also important to remember that these devices can be used intermittently with fingerstick measurements. For example, a well-controlled patient with diabetes can rely on fingerstick glucose checks a few times a day and do well. If they become ill, if they decide to embark on a new exercise regimen, if they change their diet and so on, they can use the sensor to supplement their fingerstick regimen, providing more information on how they are responding to new lifestyle changes or stressors. This kind of system takes us one step closer to closing the loop, and to the development of an artificial pancreas that senses insulin requirements based on glucose levels and the body's needs and releases insulin accordingly - the ultimate goal.

a complex disorder of carbohydrate, fat, and protein metabolism that is primarily a result of a deficiency or complete lack of insulin secretion by the beta cells of the pancreas or resistance to insulin. The disease is often familial but may be acquired, as in Cushing's syndrome, as a result of the administration of excessive glucocorticoid. The various forms of diabetes have been organized into categories developed by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus of the American Diabetes Association. Type 1 diabetes mellitus in this classification scheme includes patients with diabetes caused by an autoimmune process, dependent on insulin to prevent ketosis. This group was previously called type I, insulin-dependent diabetes mellitus, juvenile-onset diabetes, brittle diabetes, or ketosis-prone diabetes. Patients with type 2 diabetes mellitus are those previously designated as having type II, non-insulin-dependent diabetes mellitus, maturity-onset diabetes, adult-onset diabetes, ketosis-resistant diabetes, or stable diabetes. Those with gestational diabetes mellitus are women in whom glucose intolerance develops during pregnancy. Other types of diabetes are associated with a pancreatic disease, hormonal changes, adverse effects of drugs, or genetic or other anomalies. A fourth subclass, the impaired glucose tolerance group, also called prediabetes, includes persons whose blood glucose levels are abnormal although not sufficiently above the normal range to be diagnosed as having diabetes. Approximately 95% of the 18 million diabetes patients in the United States are classified as type 2, and more than 70% of those patients are obese. About 1.3 million new cases of diabetes mellitus are diagnosed in the United States each year. Contributing factors to the development of diabetes are heredity; obesity; sedentary life-style; high-fat, low-fiber diets; hypertension; and aging. See also impaired glucose tolerance, potential abnormality of glucose tolerance, previous abnormality of glucose tolerance.


When there is excess glucose present in the blood, as with type 2 diabetes, the kidneys react by flushing it out of the blood and into the urine. This results in more urine production and the need to urinate more frequently, as well as an increased risk of urinary tract infections (UTIs) in men and women. People with type 2 diabetes are twice as likely to get a UTI as people without the disease, and the risk is higher in women than in men.
×