If you’re getting a good night’s rest but still find yourself so tired you can barely function, it’s definitely worth mentioning to your doctor. Diabetes often wreaks havoc on a person’s normal blood sugar levels, causing fatigue in the process. In later stages, the tissue death associated with untreated diabetes can also limit circulation, meaning oxygenated blood isn’t being effectively transported to your vital organs, making your body work harder and tiring you out along the way.
Insulin is only recommended for individuals for type 2 diabetics when they have not been able to get blood sugars low enough to prevent complications through other means. To avoid insulin, those with this health condition should work very hard to follow a healthy eating plan that includes a lot of vegetables and lean proteins, exercise every day, and keep stress in perspective. They also should take their oral drugs regularly. It can be difficult to follow these recommendations and the help of your doctor, nutritionist, diabetes educator, health coach, or integrative medicine practitioner may be helpful. If you who want to avoid taking medicine, work with health professionals who are knowledgeable about lifestyle medicine, and can help you understand how to fit the changes into your life.

Type 2 diabetes is partly preventable by staying a normal weight, exercising regularly, and eating properly.[1] Treatment involves exercise and dietary changes.[1] If blood sugar levels are not adequately lowered, the medication metformin is typically recommended.[7][14] Many people may eventually also require insulin injections.[9] In those on insulin, routinely checking blood sugar levels is advised; however, this may not be needed in those taking pills.[15] Bariatric surgery often improves diabetes in those who are obese.[8][16]


Type 2 diabetes typically starts with insulin resistance. That is, the cells of the body resist insulin’s efforts to escort glucose into the cells. What causes insulin resistance? It appears to be caused by an accumulation of microscopic fat particles within muscle and liver cells.4 This fat comes mainly from the diet—chicken fat, beef fat, cheese fat, fish fat, and even vegetable fat. To try to overcome insulin resistance, the pancreas produces extra insulin. When the pancreas can no longer keep up, blood sugar rises. The combination of insulin resistance and pancreatic cell failure leads to type 2 diabetes.
Merck & Co., Inc., Kenilworth, NJ, USA is a global healthcare leader working to help the world be well. From developing new therapies that treat and prevent disease to helping people in need, we are committed to improving health and well-being around the world. The Merck Manual was first published in 1899 as a service to the community. The legacy of this great resource continues as the Merck Manual in the US and Canada and the MSD Manual outside of North America. Learn more about our commitment to Global Medical Knowledge.
The typical symptoms of diabetes mellitus are the three “polys:” polyuria, polydipsia, and polyphagia. Because of insulin deficiency, the assimilation and storage of glucose in muscle adipose tissues, and the liver is greatly diminished. This produces an accumulation of glucose in the blood and creates an increase in its osmolarity. In response to this increased osmotic pressure there is depletion of intracellular water and osmotic diuresis. The water loss creates intense thirst and increased urination. The increased appetite (polyphagia) is not as clearly understood. It may be the result of the body's effort to increase its supply of energy foods even though eating more carbohydrates in the absence of sufficient insulin does not meet the energy needs of the cells.

While unintentional weight loss may seem like a dream to some people, it can also be a scary sign that your pancreas isn’t working the way it’s supposed to. Accidental weight loss is often one of the first signs of diabetes. However, weight loss may also help you prevent developing the condition in the first place. In fact, losing just 5 percent of your body weight may lower your risk of diabetes by as much as 58 percent. And when you’re ready to ditch a few pounds, start by adding the 40 Healthy Snack Ideas to Keep You Slim to your routine.
Another area of pathologic changes associated with diabetes mellitus is the nervous system (diabetic neuropathy), particularly in the peripheral nerves of the lower extremities. The patient typically experiences a “stocking-type” anesthesia beginning about 10 years after the onset of the disease. There may eventually be almost total anesthesia of the affected part with the potential for serious injury to the part without the patient being aware of it. In contrast, some patients experience debilitating pain and hyperesthesia, with loss of deep tendon reflexes.
Risk factors for type 2 diabetes include obesity, high cholesterol, high blood pressure, and physical inactivity. The risk of developing type 2 diabetes also increases as people grow older. People who are over 40 and overweight are more likely to develop type 2 diabetes, although the incidence of this type of diabetes in adolescents is growing. Diabetes is more common among Native Americans, African Americans, Hispanic Americans and Asian Americans/Pacific Islanders. Also, people who develop diabetes while pregnant (a condition called gestational diabetes) are more likely to develop type 2 diabetes later in life.
Another form of diabetes called gestational diabetes can develop during pregnancy and generally resolves after the baby is delivered. This diabetic condition develops during the second or third trimester of pregnancy in about 2% of pregnancies. In 2004, incidence of gestational diabetes were reported to have increased 35% in 10 years. Children of women with gestational diabetes are more likely to be born prematurely, have hypoglycemia, or have severe jaundice at birth. The condition usually is treated by diet, however, insulin injections may be required. These women who have diabetes during pregnancy are at higher risk for developing Type II diabetes within 5-10 years.
The earliest surviving work with a detailed reference to diabetes is that of Aretaeus of Cappadocia (2nd or early 3rd century CE). He described the symptoms and the course of the disease, which he attributed to the moisture and coldness, reflecting the beliefs of the "Pneumatic School". He hypothesized a correlation of diabetes with other diseases, and he discussed differential diagnosis from the snakebite which also provokes excessive thirst. His work remained unknown in the West until 1552, when the first Latin edition was published in Venice.[110]
There is currently no cure for diabetes. The condition, however, can be managed so that patients can live a relatively normal life. Treatment of diabetes focuses on two goals: keeping blood glucose within normal range and preventing the development of long-term complications. Careful monitoring of diet, exercise, and blood glucose levels are as important as the use of insulin or oral medications in preventing complications of diabetes. In 2003, the American Diabetes Association updated its Standards of Care for the management of diabetes. These standards help manage health care providers in the most recent recommendations for diagnosis and treatment of the disease.
Incidence and Prevalence. It has been estimated that slightly over 6 per cent of the population is affected by some form of diabetes, or 17 million people in the USA and 1.2 to 1.4 million in Canada; many of these individuals are not diagnosed. Diabetes is ranked third as a cause of death, although the life span of patients with diabetes has increased due to improved methods of detection and better management. There is no cure for diabetes at the present time, but enormous strides have been made in the control of the disease. The patient must understand the importance of compliance with the entire treatment plan, including diet, exercise, and in some cases medication. The patient with diabetes is at increased risk for cardiovascular disease, renal failure, neuropathies, and diabetic retinopathy. Research studies such as the Diabetes Control and Complications Trial have indicated that tight control of blood glucose levels resulted in the delay or prevention of retinopathy, nephropathy, and neuropathy.
Some cases of diabetes are caused by the body's tissue receptors not responding to insulin (even when insulin levels are normal, which is what separates it from type 2 diabetes); this form is very uncommon. Genetic mutations (autosomal or mitochondrial) can lead to defects in beta cell function. Abnormal insulin action may also have been genetically determined in some cases. Any disease that causes extensive damage to the pancreas may lead to diabetes (for example, chronic pancreatitis and cystic fibrosis). Diseases associated with excessive secretion of insulin-antagonistic hormones can cause diabetes (which is typically resolved once the hormone excess is removed). Many drugs impair insulin secretion and some toxins damage pancreatic beta cells. The ICD-10 (1992) diagnostic entity, malnutrition-related diabetes mellitus (MRDM or MMDM, ICD-10 code E12), was deprecated by the World Health Organization (WHO) when the current taxonomy was introduced in 1999.[53]
Type 1 diabetes is partly inherited, with multiple genes, including certain HLA genotypes, known to influence the risk of diabetes. In genetically susceptible people, the onset of diabetes can be triggered by one or more environmental factors,[41] such as a viral infection or diet. Several viruses have been implicated, but to date there is no stringent evidence to support this hypothesis in humans.[41][42] Among dietary factors, data suggest that gliadin (a protein present in gluten) may play a role in the development of type 1 diabetes, but the mechanism is not fully understood.[43][44]
Health.com is part of the Meredith Health Group. All rights reserved. The material in this site is intended to be of general informational use and is not intended to constitute medical advice, probable diagnosis, or recommended treatments. All products and services featured are selected by our editors. Health.com may receive compensation for some links to products and services on this website. Offers may be subject to change without notice. See the Terms of Service and Privacy Policy (Your California Rights)for more information. Ad Choices | EU Data Subject Requests

In addition to learning about diabetes itself, older people may have to learn how to fit management of diabetes in with their management of other disorders. Learning about how to avoid complications, such as dehydration, skin breakdown, and circulation problems, and to manage factors that can contribute to complications of diabetes, such as high blood pressure and high cholesterol levels, is especially important. Such problems become more common as people age, whether they have diabetes or not.
Excessive hunger goes hand-in-hand with fatigue and cell starvation. Because the cells are resistant to the body's insulin, glucose remains in the blood. The cells are then unable to gain access to glucose, which can trigger hunger hormones that tell the brain that you are hungry. Excessive eating can complicate things further by causing blood sugars to increase.
Culturally appropriate education may help people with type 2 diabetes control their blood sugar levels, for up to 24 months.[89] If changes in lifestyle in those with mild diabetes has not resulted in improved blood sugars within six weeks, medications should then be considered.[23] There is not enough evidence to determine if lifestyle interventions affect mortality in those who already have DM2.[62]

People with glucose levels between normal and diabetic have impaired glucose tolerance (IGT) or insulin resistance. People with impaired glucose tolerance do not have diabetes, but are at high risk for progressing to diabetes. Each year, 1% to 5% of people whose test results show impaired glucose tolerance actually eventually develop diabetes. Weight loss and exercise may help people with impaired glucose tolerance return their glucose levels to normal. In addition, some physicians advocate the use of medications, such as metformin (Glucophage), to help prevent/delay the onset of overt diabetes.
There is no single gene that “causes” type 1 diabetes. Instead, there are a large number of inherited factors that may increase an individual’s likelihood of developing diabetes. This is known as multifactorial inheritance. The genes implicated in the development of type 1 diabetes mellitus control the human leukocyte antigen (HLA) system. This system is involved in the complex process of identifying cells which are a normal part of the body, and distinguishing them from foreign cells, such as those of bacteria or viruses. In an autoimmune disease such as diabetes mellitus, this system makes a mistake in identifying the normal ‘self’ cells as ‘foreign’, and attacks the body.  
There is no single gene that “causes” type 1 diabetes. Instead, there are a large number of inherited factors that may increase an individual’s likelihood of developing diabetes. This is known as multifactorial inheritance. The genes implicated in the development of type 1 diabetes mellitus control the human leukocyte antigen (HLA) system. This system is involved in the complex process of identifying cells which are a normal part of the body, and distinguishing them from foreign cells, such as those of bacteria or viruses. In an autoimmune disease such as diabetes mellitus, this system makes a mistake in identifying the normal ‘self’ cells as ‘foreign’, and attacks the body.  
Diabetes mellitus is a group of metabolic diseases characterized by high blood sugar (glucose) levels that result from defects in insulin secretion, or its action, or both. Diabetes mellitus, commonly referred to as diabetes (as it will be in this article) was first identified as a disease associated with "sweet urine," and excessive muscle loss in the ancient world. Elevated levels of blood glucose (hyperglycemia) lead to spillage of glucose into the urine, hence the term sweet urine.
Since cardiovascular disease is a serious complication associated with diabetes, some have recommended blood pressure levels below 130/80 mmHg.[89] However, evidence supports less than or equal to somewhere between 140/90 mmHg to 160/100 mmHg; the only additional benefit found for blood pressure targets beneath this range was an isolated decrease in stroke risk, and this was accompanied by an increased risk of other serious adverse events.[90][91] A 2016 review found potential harm to treating lower than 140 mmHg.[92] Among medications that lower blood pressure, angiotensin converting enzyme inhibitors (ACEIs) improve outcomes in those with DM while the similar medications angiotensin receptor blockers (ARBs) do not.[93] Aspirin is also recommended for people with cardiovascular problems, however routine use of aspirin has not been found to improve outcomes in uncomplicated diabetes.[94]
The prognosis of diabetes is related to the extent to which the condition is kept under control to prevent the development of the complications described in the preceding sections. Some of the more serious complications of diabetes such as kidney failure and cardiovascular disease, can be life-threatening. Acute complications such as diabetic ketoacidosis can also be life-threatening. As mentioned above, aggressive control of blood sugar levels can prevent or delay the onset of complications, and many people with diabetes lead long and full lives.
A growing number of people in the U.S. and throughout the world are overweight and more prone to develop Type 2 diabetes, particularly if they have the genetics for it. "Type 2 diabetes can be caused by genetic inheritance, but by far the obesity epidemic has created massive increases in the occurrence of Type 2 diabetes. This is due to the major insulin resistance that is created by obesity," Gage says.
Type 2 diabetes used to be called adult-onset diabetes or non-insulin dependent diabetes because it was diagnosed mainly in adults who did not require insulin to manage their condition. However, because more children are starting to be diagnosed with T2D, and insulin is used more frequently to help manage type 2 diabetes, referring to the condition as “adult-onset” or “non-insulin dependent” is no longer accurate.

The progression of nephropathy in patients can be significantly slowed by controlling high blood pressure, and by aggressively treating high blood sugar levels. Angiotensin converting enzyme inhibitors (ACE inhibitors) or angiotensin receptor blockers (ARBs) used in treating high blood pressure may also benefit kidney disease in patients with diabetes.


2.Retinopathy - Diabetes may cause blood vessels in the retina (the light sensitive lining of the eye) to become leaky, blocked, or grow abnormally [Figure 1]. Retinopathy is rare before the age of 10 and the risk increases with the length of time a person has diabetes. Treatments such as laser, injections in the eye, or other procedures may be helpful to prevent visual loss or restore sight. The longer a patient has diabetes, the greater chance of developing an eye problem.  All patients with diabetes are at risk for developing retinopathy, but the risk is higher for patients with worse blood sugar control.  Early retinopathy may have no symptoms, but early treatment is essential to prevent any loss of vision.

Metformin (Glucophage, Glucophage XR, Glumetza, Fortamet, Riomet) belongs to a class of drugs called biguanides. Metformin is first-line therapy for most type 2 diabetics. It works to stop the liver from making excess glucose, and has a low risk of hypoglycemia. Hypoglycemia, or very low blood sugar can cause symptoms such as sweating, nervousness, heart palpitations, weakness, intense hunger, trembling, and problems speaking. Many patients lose some weight taking metformin, which is also helpful for blood sugar control.

Having diabetes requires life-long treatment and follow-up by health professionals. Diabetes can be linked to damage of the eyes, kidneys and feet. It is also associated with increased risk of strokes, heart attacks and poor blood circulation to the legs. Medical care aims to minimise these risks by controlling diabetes, blood pressure and cholesterol and screening for possible complications caused by the diabetes. 
Managing your blood glucose, blood pressure, and cholesterol, and quitting smoking if you smoke, are important ways to manage your type 2 diabetes. Lifestyle changes that include planning healthy meals, limiting calories if you are overweight, and being physically active are also part of managing your diabetes. So is taking any prescribed medicines. Work with your health care team to create a diabetes care plan that works for you.
Insulin is needed to allow glucose to pass from the blood into most of the body cells. Only the cells of the brain and central nervous system can use glucose from the blood in the absence of insulin. Without insulin, most body cells metabolize substances other than glucose for energy. However, fat metabolism in the absence of glucose metabolism, creates ketone bodies which are poisonous and their build up is associated with hyperglycemic coma. In the absence of sufficient insulin, unmetabolized glucose builds up in the blood. Water is drawn from body cells by osmosis to dilute the highly concentrated blood, and is then excreted along with much of the glucose, once the renal threshold for glucose (usually 10 mmol/L) is exceeded. Dehydration follows.

No single environmental trigger has been identified as causing diabetes mellitus, however both infectious agents and dietary factors are thought to be important. Various viruses have been implicated in the development of type I DM. They may act by initiating or modifying the autoimmune process. In particular, the rubella virus and coxsackie viruses have been closely studied. In particular, congenital rubella infection has shown direct relationships with the development of type 1 diabetes mellitus. This is presumably due to the virus (or antibodies against it) damaging the beta cells of the pancreas. Some research has looked at dietary factors that may be associated with type 1 diabetes. In particular, cow’s milk proteins (such as bovine serum albumin) which may have some similarities to pancreatic islet cell markers may be able to trigger the autoimmune process. Other chemicals including nitrosamines have been identified as causes of diabetes mellitus in animal models, but not in humans.
Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) refer to levels of blood glucose concentration above the normal range, but below those which are diagnostic for diabetes. Subjects with IGT and/or IFG are at substantially higher risk of developing diabetes and cardiovascular disease than those with normal glucose tolerance. The benefits of clinical intervention in subjects with moderate glucose intolerance is a topic of much current interest.
Diabetes: The differences between types 1 and 2 There are fundamental differences between diabetes type 1 and type 2, including when they might occur, their causes, and how they affect someone's life. Find out here what distinguishes the different forms of the disease, the various symptoms, treatment methods, and how blood tests are interpreted. Read now
A chronic metabolic disorder in which the use of carbohydrate is impaired and that of lipid and protein is enhanced. It is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma. Long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection.
Sugar doesn't cause diabetes. But there is one way that sugar can influence whether a person gets type 2 diabetes. Consuming too much sugar (or sugary foods and drinks) can make people put on weight. Gaining too much weight leads to type 2 diabetes in some people. Of course, eating too much sugar isn't the only cause of weight gain. Weight gain from eating too much of any food can make a person's chance of getting diabetes greater.

Diabetes was one of the first diseases described,[107] with an Egyptian manuscript from c. 1500 BCE mentioning "too great emptying of the urine".[108] The Ebers papyrus includes a recommendation for a drink to be taken in such cases.[109] The first described cases are believed to be of type 1 diabetes.[108] Indian physicians around the same time identified the disease and classified it as madhumeha or "honey urine", noting the urine would attract ants.[108][109]
Jump up ^ Feinman, RD; Pogozelski, WK; Astrup, A; Bernstein, RK; Fine, EJ; Westman, EC; Accurso, A; Frassetto, L; Gower, BA; McFarlane, SI; Nielsen, JV; Krarup, T; Saslow, L; Roth, KS; Vernon, MC; Volek, JS; Wilshire, GB; Dahlqvist, A; Sundberg, R; Childers, A; Morrison, K; Manninen, AH; Dashti, HM; Wood, RJ; Wortman, J; Worm, N (January 2015). "Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base". Nutrition. Burbank, Los Angeles County, Calif. 31 (1): 1–13. doi:10.1016/j.nut.2014.06.011. PMID 25287761.
Unlike people with type 1 diabetes, people with type 2 diabetes produce insulin; however, the insulin their pancreas secretes is either not enough or the body is unable to recognize the insulin and use it properly (insulin resistance). When there isn't enough insulin or the insulin is not used as it should be, glucose (sugar) can't get into the body's cells and builds up in the bloodstream instead. When glucose builds up in the blood instead of going into cells, it causes damage in multiple areas of the body. Also, since cells aren't getting the glucose they need, they can't function properly.
Diabetes mellitus is classified into four broad categories: type 1, type 2, gestational diabetes, and "other specific types".[11] The "other specific types" are a collection of a few dozen individual causes.[11] Diabetes is a more variable disease than once thought and people may have combinations of forms.[37] The term "diabetes", without qualification, usually refers to diabetes mellitus.
In general, women live longer than men do because they have a lower risk of heart disease, but when women develop diabetes, their risk for heart disease skyrockets, and death by heart failure is more likely in women than in men. Another study also found that in people with diabetes, heart attacks are more often fatal for women than they are for men. Other examples of how diabetes affects women differently than men are:
×