Type 2 diabetes was also previously referred to as non-insulin dependent diabetes mellitus (NIDDM), or adult-onset diabetes mellitus (AODM). In type 2 diabetes, patients can still produce insulin, but do so relatively inadequately for their body's needs, particularly in the face of insulin resistance as discussed above. In many cases this actually means the pancreas produces larger than normal quantities of insulin. A major feature of type 2 diabetes is a lack of sensitivity to insulin by the cells of the body (particularly fat and muscle cells).
Insulin is a hormone produced by the beta cells within the pancreas in response to the intake of food. The role of insulin is to lower blood sugar (glucose) levels by allowing cells in the muscle, liver and fat to take up sugar from the bloodstream that has been absorbed from food, and store it away as energy. In type 1 diabetes (previously called insulin-dependent diabetes mellitus), the insulin-producing cells are destroyed and the body is not able to produce insulin naturally. This means that sugar is not stored away but is constantly released from energy stores giving rise to high sugar levels in the blood. This in turn causes dehydration and thirst (because the high glucose ‘spills over’ into the urine and pulls water out of the body at the same time). To exacerbate the problem, because the body is not making insulin it ‘thinks’ that it is starving so does everything it can to release even more stores of energy into the bloodstream. So, if left untreated, patients become increasingly unwell, lose weight, and develop a condition called diabetic ketoacidosis, which is due to the excessive release of acidic energy stores and causes severe changes to how energy is used and stored in the body.

It is clearly established that diabetes mellitus is not a single disease but a genetically heterogeneous group of disorders that share glucose intolerance in common (4–7). The concept of genetic heterogeneity (i.e. that different genetic and/or environmental etiologic factors can result in similar phenotypes) has significantly altered the genetic analysis of this common disorder. Diabetes and glucose intolerance are not diagnostic terms, but, like anemia, simply describe symptoms and/or laboratory abnormalities that can have a number of distinct etiologies.
Along with following your diabetes care plan, you may need diabetes medicines, which may include pills or medicines you inject under your skin, such as insulin. Over time, you may need more than one diabetes medicine to manage your blood glucose. Even if you don’t take insulin, you may need it at special times, such as during pregnancy or if you are in the hospital. You also may need medicines for high blood pressure, high cholesterol, or other conditions.

This information is not designed to replace a physician's independent judgment about the appropriateness or risks of a procedure for a given patient. Always consult your doctor about your medical conditions. Vertical Health & EndocrineWeb do not provide medical advice, diagnosis or treatment. Use of this website is conditional upon your acceptance of our user agreement.
What are symptoms of type 2 diabetes in children? Type 2 diabetes is becoming increasingly common in children, and this is linked to a rise in obesity. However, the condition can be difficult to detect in children because it develops gradually. Symptoms, treatment, and prevention of type 2 diabetes are similar in children and adults. Learn more here. Read now

The genes identified so far in people with type 2 include many that affect the insulin-producing beta cells of the pancreas, says Craig Hanis, PhD, a professor at the Human Genetics Center at the University of Texas Health Science Center in Houston. And yet he emphasizes that why people get type 2 isn't at all clear yet: "What it tells us is that diabetes is a complicated disease."
Low glycemic index foods also may be helpful. The glycemic index is a measure of how quickly a food causes a rise in your blood sugar. Foods with a high glycemic index raise your blood sugar quickly. Low glycemic index foods may help you achieve a more stable blood sugar. Foods with a low glycemic index typically are foods that are higher in fiber.
Originally described in approximately 30% of patients with type 1 diabetes mellitus, limited joint mobility occurs in 50% of patients older than age 10 years who have had diabetes for longer than 5 years. The condition restricts joint extension, making it difficult to press the hands flat against each other. The skin of patients with severe joint involvement has a thickened and waxy appearance.
Type 1 diabetes mellitus is predominantly a disease of the young, usually developing before 20 years of age. Overall, type I DM makes up approximately 15% of all cases of diabetes. It develops in approximately 1 in 600 children and is one of the most common chronic diseases in children. The incidence is relatively low for children under the age of 5, increases between 5 and 15, and then tapers off.
Jump up ^ Palmer, Suetonia C.; Mavridis, Dimitris; Nicolucci, Antonio; Johnson, David W.; Tonelli, Marcello; Craig, Jonathan C.; Maggo, Jasjot; Gray, Vanessa; De Berardis, Giorgia; Ruospo, Marinella; Natale, Patrizia; Saglimbene, Valeria; Badve, Sunil V.; Cho, Yeoungjee; Nadeau-Fredette, Annie-Claire; Burke, Michael; Faruque, Labib; Lloyd, Anita; Ahmad, Nasreen; Liu, Yuanchen; Tiv, Sophanny; Wiebe, Natasha; Strippoli, Giovanni F.M. (19 July 2016). "Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes". JAMA: the Journal of the American Medical Association. 316 (3): 313–24. doi:10.1001/jama.2016.9400. PMID 27434443.

Creatinine is a chemical waste molecule that is generated from muscle metabolism. Creatinine is produced from creatine, a molecule of major importance for energy production in muscles. Creatinine has been found to be a fairly reliable indicator of kidney function. As the kidneys become impaired the creatinine level in the blood will rise. Normal levels of creatinine in the blood vary from gender and age of the individual.


Poorly controlled diabetic patients are at risk for numerous oral complications such as periodontal disease, salivary gland dysfunction, infection, neuropathy, and poor healing. None of these complications are unique to diabetes. However, their presence may serve as an early clue to the possible presence of diabetes, prompting your dentist to perform or request further testing.
Progression toward type 2 diabetes may even be self-perpetuating. Once a person begins to become insulin resistant, for whatever reason, things may snowball from there. The increased levels of circulating insulin required to compensate for resistance encourage the body to pack on pounds. That extra weight will in turn make the body more insulin resistant. Furthermore, the heavier a person is, the more difficult it can be to exercise, continuing the slide toward diabetes.
In 2013, of the estimated 382 million people with diabetes globally, more than 80 per cent lived in LMIC. It was estimated that India had 65.1 million adults with diabetes in 2013, and had the 2nd position among the top 10 countries with the largest number of diabetes. This number is predicted to increase to 109 million by 2035 unless steps are taken to prevent new cases of diabetes1. Primary prevention of diabetes is feasible and strategies such as lifestyle modification are shown to be effective in populations of varied ethnicity2,3. However, for implementation of the strategies at the population level, national programmes which are culturally and socially acceptable and practical have to be formulated which are currently lacking in most of the developed and developing countries. Early diagnosis and institution of appropriate therapeutic measures yield the desired glycaemic outcomes and prevent the vascular complications4.

Jump up ^ Emadian A, Andrews RC, England CY, Wallace V, Thompson JL (November 2015). "The effect of macronutrients on glycaemic control: a systematic review of dietary randomised controlled trials in overweight and obese adults with type 2 diabetes in which there was no difference in weight loss between treatment groups". The British Journal of Nutrition. 114 (10): 1656–66. doi:10.1017/S0007114515003475. PMC 4657029. PMID 26411958.


When there is excess glucose present in the blood, as with type 2 diabetes, the kidneys react by flushing it out of the blood and into the urine. This results in more urine production and the need to urinate more frequently, as well as an increased risk of urinary tract infections (UTIs) in men and women. People with type 2 diabetes are twice as likely to get a UTI as people without the disease, and the risk is higher in women than in men.
×