One of the most common ways people with type 2 diabetes attempt to lower their blood sugar is by drastically reducing their intake of carbs. The ADA agrees that carbohydrate counting is essential if you have diabetes, but extreme diets like the ketogenic diet, which reduces carb intake to as little as 5 percent of your daily calories, can be risky for some people with diabetes. (36)

Diabetes: The differences between types 1 and 2 There are fundamental differences between diabetes type 1 and type 2, including when they might occur, their causes, and how they affect someone's life. Find out here what distinguishes the different forms of the disease, the various symptoms, treatment methods, and how blood tests are interpreted. Read now


Type 2 diabetes is different. A person with type 2 diabetes still produces insulin but the body doesn't respond to it normally. Glucose is less able to enter the cells and do its job of supplying energy (a problem called insulin resistance). This raises the blood sugar level, so the pancreas works hard to make even more insulin. Eventually, this strain can make the pancreas unable to produce enough insulin to keep blood sugar levels normal.
n a metabolic disorder caused primarily by a defect in the production of insulin by the islet cells of the pancreas, resulting in an inability to use carbohydrates. Characterized by hyperglycemia, glycosuria, polyuria, hyperlipemia (caused by imperfect catabolism of fats), acidosis, ketonuria, and a lowered resistance to infection. Periodontal manifestations if blood sugar is not being controlled may include recurrent and multiple periodontal abscesses, osteoporotic changes in alveolar bone, fungating masses of granulation tissue protruding from periodontal pockets, a lowered resistance to infection, and delay in healing after periodontal therapy. See also blood glucose level(s).
Certain genetic markers have been shown to increase the risk of developing Type 1 diabetes. Type 2 diabetes is strongly familial, but it is only recently that some genes have been consistently associated with increased risk for Type 2 diabetes in certain populations. Both types of diabetes are complex diseases caused by mutations in more than one gene, as well as by environmental factors.
Dr. Shiel received a Bachelor of Science degree with honors from the University of Notre Dame. There he was involved in research in radiation biology and received the Huisking Scholarship. After graduating from St. Louis University School of Medicine, he completed his Internal Medicine residency and Rheumatology fellowship at the University of California, Irvine. He is board-certified in Internal Medicine and Rheumatology.
Type 2 diabetes usually has a slower onset and can often go undiagnosed. But many people do have symptoms like extreme thirst and frequent urination. Other signs include sores that won't heal, frequent infections (including vaginal infections in some women), and changes in vision. Some patients actually go to the doctor with symptoms resulting from the complications of diabetes, like tingling in the feet (neuropathy) or vision loss (retinopathy), without knowing they have the disease. This is why screening people at risk for diabetes is so important. The best way to avoid complications is to get blood glucose under control before
The body obtains glucose from three main sources: the intestinal absorption of food; the breakdown of glycogen (glycogenolysis), the storage form of glucose found in the liver; and gluconeogenesis, the generation of glucose from non-carbohydrate substrates in the body.[60] Insulin plays a critical role in balancing glucose levels in the body. Insulin can inhibit the breakdown of glycogen or the process of gluconeogenesis, it can stimulate the transport of glucose into fat and muscle cells, and it can stimulate the storage of glucose in the form of glycogen.[60]

Prevention and treatment involve maintaining a healthy diet, regular physical exercise, a normal body weight, and avoiding use of tobacco.[2] Control of blood pressure and maintaining proper foot care are important for people with the disease.[2] Type 1 DM must be managed with insulin injections.[2] Type 2 DM may be treated with medications with or without insulin.[9] Insulin and some oral medications can cause low blood sugar.[13] Weight loss surgery in those with obesity is sometimes an effective measure in those with type 2 DM.[14] Gestational diabetes usually resolves after the birth of the baby.[15]
Most cases (95%) of type 1 diabetes mellitus are the result of environmental factors interacting with a genetically susceptible person. This interaction leads to the development of autoimmune disease directed at the insulin-producing cells of the pancreatic islets of Langerhans. These cells are progressively destroyed, with insulin deficiency usually developing after the destruction of 90% of islet cells.

Blood glucose levels: persistently elevated blood sugar levels are diagnostic of diabetes mellitus. A specific test called a glucose tolerance test (GTT) may be performed. For this you need to be fasted and will be given a sugary drink. Your glucose level will then be measured at one and two hours after the doseto determine how welll your body copes with glucose.


Commonly, diabetic patients’ random blood glucose measurement will be greater than 200 mg/dL. Additionally, diabetic patients’ urinalysis will be positive for greater than 30 mg/g of microalbumin on at least two of three consecutive sampling dates. Type 2 diabetics who have had diabetes mellitus for more than 2 years will usually have a fasting C-peptide level greater than 1.0 ng/dL. Patients with type 1 diabetes will have islet cell and anti-insulin autoantibodies present in their blood within 6 months of diagnosis. These antibodies, though, usually fade after 6 months.
Hypoglycemic reactions are promptly treated by giving carbohydrates (orange juice, hard candy, honey, or any sugary food); if necessary, subcutaneous or intramuscular glucagon or intravenous dextrose (if the patient is not conscious) is administered. Hyperglycemic crises are treated initially with prescribed intravenous fluids and insulin and later with potassium replacement based on laboratory values.

Another less common form is gestational diabetes, a temporary condition that occurs during pregnancy. Depending on risk factors, between 3% to 13% of Canadian women will develop gestational diabetes which can be harmful for the baby if not controlled. The problem usually clears up after delivery, but women who have had gestational diabetes have a higher risk of developing type 2 diabetes later in life.

In the exchange system, foods are divided into six food groups (starch, meat, vegetable, fruit, milk, and fat) and the patient is taught to select items from each food group as ordered. Items in each group may be exchanged for each other in specified portions. The patient should avoid concentrated sweets and should increase fiber in the diet. Special dietetic foods are not necessary. Patient teaching should emphasize that a diabetic diet is a healthy diet that all members of the family can follow.
They may need to take medications in order to keep glucose levels within a healthy range. Medications for type 2 diabetes are usually taken by mouth in the form of tablets and should always be taken around meal times and as prescribed by the doctor. However, if blood glucose is not controlled by oral medications, a doctor may recommend insulin injections.
Louis B. Malinow, MD is an MDVIP-affiliated physician that's been practicing in Baltimore for more than 20 years. He's board certified in Internal Medicine, a certified Hypertension Specialist and a Diplomate of the American Board of Clinical Lipidology. Dr. Malinow graduated from the University of Maryland School of Medicine and completed his residency at Stanford University Hospital in Stanford, CA. Dr. Malinow is one of the only physicians in Maryland that specializes in both high blood pressure and high cholesterol management. He is also a member of the prestigious Alpha Omega Alpha medical honor society and is recognized by Best Doctors and Top Doctor by U.S. News & World Report and Baltimore Magazine. Dr. Malinow has appeared on numerous news programs advocating for preventive care and wellness.

People with T2D produce insulin, but their bodies don’t use it correctly; this is referred to as being insulin resistant. People with type 2 diabetes may also be unable to produce enough insulin to handle the glucose in their body. In these instances, insulin is needed to allow the glucose to travel from the bloodstream into our cells, where it’s used to create energy.
In the United States alone, more than 8 million people have undiagnosed diabetes, according to the American Diabetes Association. But you don't need to become a statistic. Understanding possible diabetes symptoms can lead to early diagnosis and treatment — and a lifetime of better health. If you're experiencing any of the following diabetes signs and symptoms, see your doctor.
Type 1 diabetes mellitus has wide geographic variation in incidence and prevalence. [30] Annual incidence varies from 0.61 cases per 100,000 population in China to 41.4 cases per 100,000 population in Finland. Substantial variations are observed between nearby countries with differing lifestyles, such as Estonia and Finland, and between genetically similar populations, such as those in Iceland and Norway.
Dietary factors also influence the risk of developing type 2 DM. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[46][47] The type of fats in the diet is also important, with saturated fat and trans fats increasing the risk and polyunsaturated and monounsaturated fat decreasing the risk.[45] Eating lots of white rice, and other starches, also may increase the risk of diabetes.[48] A lack of physical activity is believed to cause 7% of cases.[49]

Diabetes mellitus (DM), commonly referred to as diabetes, is a group of metabolic disorders in which there are high blood sugar levels over a prolonged period.[10] Symptoms of high blood sugar include frequent urination, increased thirst, and increased hunger.[2] If left untreated, diabetes can cause many complications.[2] Acute complications can include diabetic ketoacidosis, hyperosmolar hyperglycemic state, or death.[3] Serious long-term complications include cardiovascular disease, stroke, chronic kidney disease, foot ulcers, and damage to the eyes.[2]
The Diabetes Control and Complications Trial (DCCT) was a clinical study conducted by the United States National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) that was published in the New England Journal of Medicine in 1993. Test subjects all had diabetes mellitus type 1 and were randomized to a tight glycemic arm and a control arm with the standard of care at the time; people were followed for an average of seven years, and people in the treatment had dramatically lower rates of diabetic complications. It was as a landmark study at the time, and significantly changed the management of all forms of diabetes.[86][130][131]
Although there are dozens of known type 1 genes, about half of the risk attributable to heredity comes from a handful that coordinate a part of the immune system called HLA, which helps the body recognize nefarious foreign invaders, such as viruses, bacteria, and parasites. Type 1 diabetes is an autoimmune disease, in which the body's own immune system destroys the cells in the pancreas that produce insulin, so perhaps it is no surprise that immunity genes are involved. Other autoimmune diseases share the HLA gene link, which may be why people with type 1 are more likely to develop additional auto­immune disorders.
There is an overall lack of public awareness of the signs and symptoms of type 1 diabetes. Making yourself aware of the signs and symptoms of type 1 diabetes is a great way to be proactive about your health and the health of your family members. If you notice any of these signs or symptoms, it’s possible that you have (or your child has) type 1 diabetes. A doctor can make that diagnosis by checking blood glucose levels.
There are a number of rare cases of diabetes that arise due to an abnormality in a single gene (known as monogenic forms of diabetes or "other specific types of diabetes").[10][13] These include maturity onset diabetes of the young (MODY), Donohue syndrome, and Rabson–Mendenhall syndrome, among others.[10] Maturity onset diabetes of the young constitute 1–5% of all cases of diabetes in young people.[38]

Manage mild hypoglycemia by giving rapidly absorbed oral carbohydrate or glucose; for a comatose patient, administer an intramuscular injection of the hormone glucagon, which stimulates the release of liver glycogen and releases glucose into the circulation. Where appropriate, an alternative therapy is intravenous glucose (preferably no more than a 10% glucose solution). All treatments for hypoglycemia provide recovery in approximately 10 minutes. (See Treatment.)

Childhood obesity rates are rising, and so are the rates of type 2 diabetes in youth. More than 75% of children with type 2 diabetes have a close relative who has it, too. But it’s not always because family members are related; it can also be because they share certain habits that can increase their risk. Parents can help prevent or delay type 2 diabetes by developing a plan for the whole family:
Type 2 diabetes (formerly named non-insulin-dependent) which results from the body's inability to respond properly to the action of insulin produced by the pancreas. Type 2 diabetes is much more common and accounts for around 90% of all diabetes cases worldwide. It occurs most frequently in adults, but is being noted increasingly in adolescents as well.
Dr. Balentine received his undergraduate degree from McDaniel College in Westminster, Maryland. He attended medical school at the Philadelphia College of Osteopathic Medicine graduating in1983. He completed his internship at St. Joseph's Hospital in Philadelphia and his Emergency Medicine residency at Lincoln Medical and Mental Health Center in the Bronx, where he served as chief resident.
It's not as clear what the rest of the type 1 genes are up to, but researchers are eager to find out. "Even though something accounts for a small part [of the genetic risk], it could have a significant impact," says Stephen Rich, PhD, director of the Center for Public Health Genomics at the University of Virginia School of Medicine. Understanding these genes' role may clue researchers in to less obvious biological pathways involved in type 1 diabetes, and to possible prevention strategies.
Insulin, a hormone released from the pancreas (an organ behind the stomach that also produces digestive enzymes), controls the amount of glucose in the blood. Glucose in the bloodstream stimulates the pancreas to produce insulin. Insulin helps glucose to move from the blood into the cells. Once inside the cells, glucose is converted to energy, which is used immediately, or the glucose is stored as fat or glycogen until it is needed.
A growing number of people in the U.S. and throughout the world are overweight and more prone to develop Type 2 diabetes, particularly if they have the genetics for it. "Type 2 diabetes can be caused by genetic inheritance, but by far the obesity epidemic has created massive increases in the occurrence of Type 2 diabetes. This is due to the major insulin resistance that is created by obesity," Gage says.
Complications of diabetes are responsible for considerable morbidity and mortality. The acute complications of diabetes are hypo- and hyperglycemic coma and infections. The chronic complications include microvascular complications such as retinopathy and nephropathy, and the macrovascular complications of heart disease and stroke. Diabetes mellitus is the commonest cause of blindness and renal failure in the UK and the USA. Other common complications include autonomic and peripheral neuropathy. A combination of vascular and neuropathic disturbances results in a high prevalence of impotence in men with diabetes. Peripheral neuropathy causes lack of sensation in the feet which can cause minor injuries to go unnoticed, become infected and, with circulatory problems obstructing healing, ulceration and gangrene are serious risks and amputation is not uncommon. Evidence from meta-analysis of studies of the relationship between glycemic control and microvascular complications (Wang, Lau, & Chalmers, 1993), and from the longitudinal multicenter Diabetes Control and Complications Trial (DCCT) in the USA (DCCT Research Group, 1993), have established a clear relationship between improved blood glucose control and reduction of risk of retinopathy and other microvascular complications in insulin-dependent diabetes mellitus (IDDM). It is likely that there would be similar findings for noninsulin-dependent diabetes mellitus (NIDDM) though the studies did not include NIDDM patients. However, the DCCT included highly selected, well-motivated, well-educated and well-supported patients, cared for by well-staffed diabetes care teams involving educators and psychologists as well as diabetologists and diabetes specialist nurses.
A final note about type 1: Some people have a "honeymoon" period, a brief remission of symptoms while the pancreas is still secreting some insulin. The honeymoon phase typically occurs after insulin treatment has been started. A honeymoon can last as little as a week or even up to a year. But the absence of symptoms doesn't mean the diabetes is gone. The pancreas will eventually be unable to secrete insulin, and, if untreated, the symptoms will return.
Assemble a Medical Team: Whether you've had diabetes for a long time or you've just been diagnosed, there are certain doctors that are important to see. It is extremely important to have a good primary care physician. This type of doctor will help coordinate appointments for other physicians if they think that you need it. Some primary physicians treat diabetes themselves, whereas others will recommend that you visit an endocrinologist for diabetes treatment. An endocrinologist is a person who specializes in diseases of the endocrine system, diabetes being one of them.
According to the American Diabetes Association, a child has a 1 in 7 risk of getting type 2 diabetes if his/her parent was diagnosed with type 2 diabetes before the age of 50, and a 1 in 13 risk of developing it if the parent was diagnosed after the age of 50. To see if you may be at risk for diabetes, consider taking this short and simple Type 2 Diabetes Risk Test from the ADA.
What medication is available for diabetes? Diabetes causes blood sugar levels to rise. The body may stop producing insulin, the hormone that regulates blood sugar, and this results in type 1 diabetes. In people with type 2 diabetes, insulin is not working effectively. Learn about the range of treatments for each type and recent medical developments here. Read now
People with type 1 diabetes sometimes receive transplantation of an entire pancreas or of only the insulin-producing cells from a donor pancreas. This procedure may allow people with type 1 diabetes mellitus to maintain normal glucose levels. However, because immunosuppressant drugs must be given to prevent the body from rejecting the transplanted cells, pancreas transplantation is usually done only in people who have serious complications due to diabetes or who are receiving another transplanted organ (such as a kidney) and will require immunosuppressant drugs anyway.
Diabetes mellitus is linked with an increased risk of heart attacks, strokes, poor blood circulation to the legs and damage to the eyes, feet and kidneys. Early diagnosis and strict control of blood sugar, blood pressure and cholesterol levels can help to prevent or delay these complications associated with diabetes. Maintaining a healthy lifestyle (regular exercise, eating healthily and maintaining a healthy weight) is important in reducing the risk of developing type 2 diabetes.

The primary complications of diabetes due to damage in small blood vessels include damage to the eyes, kidneys, and nerves.[32] Damage to the eyes, known as diabetic retinopathy, is caused by damage to the blood vessels in the retina of the eye, and can result in gradual vision loss and eventual blindness.[32] Diabetes also increases the risk of having glaucoma, cataracts, and other eye problems. It is recommended that diabetics visit an eye doctor once a year.[33] Damage to the kidneys, known as diabetic nephropathy, can lead to tissue scarring, urine protein loss, and eventually chronic kidney disease, sometimes requiring dialysis or kidney transplantation.[32] Damage to the nerves of the body, known as diabetic neuropathy, is the most common complication of diabetes.[32] The symptoms can include numbness, tingling, pain, and altered pain sensation, which can lead to damage to the skin. Diabetes-related foot problems (such as diabetic foot ulcers) may occur, and can be difficult to treat, occasionally requiring amputation. Additionally, proximal diabetic neuropathy causes painful muscle atrophy and weakness.


Doctors can also measure the level of a protein, hemoglobin A1C (also called glycosylated or glycolated hemoglobin), in the blood. Hemoglobin is the red, oxygen-carrying substance in red blood cells. When blood is exposed to high blood glucose levels over a period of time, glucose attaches to the hemoglobin and forms glycosylated hemoglobin. The hemoglobin A1C level (reported as the percentage of hemoglobin that is A1C) reflects long-term trends in blood glucose levels rather than rapid changes.

The classic symptoms of diabetes such as polyuria, polydypsia and polyphagia occur commonly in type 1 diabetes, which has a rapid development of severe hyperglycaemia and also in type 2 diabetes with very high levels of hyperglycaemia. Severe weight loss is common only in type 1 diabetes or if type 2 diabetes remains undetected for a long period. Unexplained weight loss, fatigue and restlessness and body pain are also common signs of undetected diabetes. Symptoms that are mild or have gradual development could also remain unnoticed.
Insulin is essential to process carbohydrates, fat, and protein. Insulin reduces blood glucose levels by allowing glucose to enter muscle cells and by stimulating the conversion of glucose to glycogen (glycogenesis) as a carbohydrate store. Insulin also inhibits the release of stored glucose from liver glycogen (glycogenolysis) and slows the breakdown of fat to triglycerides, free fatty acids, and ketones. It also stimulates fat storage. Additionally, insulin inhibits the breakdown of protein and fat for glucose production (gluconeogenesis) in the liver and kidneys.
Diabetes insipidus is considered very rare in less 20,000 cases diagnosed per year. Diabetes mellitus is more common, with type 2 diabetes being more common than type 1. There are more than 3 million cases of type 2 diabetes. Unlike diabetes mellitus, diabetes insipidus is not treated by controlling insulin levels. Depending on your symptoms, your doctor may prescribe a low-salt diet, hormone therapy, or have you increase your water intake. 
Regarding age, data shows that for each decade after 40 years of age regardless of weight there is an increase in incidence of diabetes. The prevalence of diabetes in persons 65 years of age and older is around 25%. Type 2 diabetes is also more common in certain ethnic groups. Compared with a 7% prevalence in non-Hispanic Caucasians, the prevalence in Asian Americans is estimated to be 8.0%, in Hispanics 13%, in blacks around 12.3%, and in certain Native American communities 20% to 50%. Finally, diabetes occurs much more frequently in women with a prior history of diabetes that develops during pregnancy (gestational diabetes).
Dietary factors also influence the risk of developing type 2 DM. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[46][47] The type of fats in the diet is also important, with saturated fat and trans fats increasing the risk and polyunsaturated and monounsaturated fat decreasing the risk.[45] Eating lots of white rice, and other starches, also may increase the risk of diabetes.[48] A lack of physical activity is believed to cause 7% of cases.[49]
Dr. Charles "Pat" Davis, MD, PhD, is a board certified Emergency Medicine doctor who currently practices as a consultant and staff member for hospitals. He has a PhD in Microbiology (UT at Austin), and the MD (Univ. Texas Medical Branch, Galveston). He is a Clinical Professor (retired) in the Division of Emergency Medicine, UT Health Science Center at San Antonio, and has been the Chief of Emergency Medicine at UT Medical Branch and at UTHSCSA with over 250 publications.
×