The body obtains glucose from three main sources: the intestinal absorption of food; the breakdown of glycogen (glycogenolysis), the storage form of glucose found in the liver; and gluconeogenesis, the generation of glucose from non-carbohydrate substrates in the body.[60] Insulin plays a critical role in balancing glucose levels in the body. Insulin can inhibit the breakdown of glycogen or the process of gluconeogenesis, it can stimulate the transport of glucose into fat and muscle cells, and it can stimulate the storage of glucose in the form of glycogen.[60]
Watch for thirst or a very dry mouth, frequent urination, vomiting, shortness of breath, fatigue and fruity-smelling breath. You can check your urine for excess ketones with an over-the-counter ketones test kit. If you have excess ketones in your urine, consult your doctor right away or seek emergency care. This condition is more common in people with type 1 diabetes but can sometimes occur in people with type 2 diabetes.

Endocrinology is the specialty of medicine that deals with hormone disturbances, and both endocrinologists and pediatric endocrinologists manage patients with diabetes. People with diabetes may also be treated by family medicine or internal medicine specialists. When complications arise, people with diabetes may be treated by other specialists, including neurologists, gastroenterologists, ophthalmologists, surgeons, cardiologists, or others.
Women seem to be at a greater risk as do certain ethnic groups,[10][107] such as South Asians, Pacific Islanders, Latinos, and Native Americans.[23] This may be due to enhanced sensitivity to a Western lifestyle in certain ethnic groups.[108] Traditionally considered a disease of adults, type 2 diabetes is increasingly diagnosed in children in parallel with rising obesity rates.[10] Type 2 diabetes is now diagnosed as frequently as type 1 diabetes in teenagers in the United States.[13]
Per the WHO, people with fasting glucose levels from 6.1 to 6.9 mmol/l (110 to 125 mg/dl) are considered to have impaired fasting glucose.[67] people with plasma glucose at or above 7.8 mmol/l (140 mg/dl), but not over 11.1 mmol/l (200 mg/dl), two hours after a 75 gram oral glucose load are considered to have impaired glucose tolerance. Of these two prediabetic states, the latter in particular is a major risk factor for progression to full-blown diabetes mellitus, as well as cardiovascular disease.[68] The American Diabetes Association (ADA) since 2003 uses a slightly different range for impaired fasting glucose of 5.6 to 6.9 mmol/l (100 to 125 mg/dl).[69]
Jump up ^ Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, Cercy K, Vos T, Murray CJ, Forouzanfar MH (August 2016). "Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013". BMJ. 354: i3857. doi:10.1136/bmj.i3857. PMC 4979358. PMID 27510511.
To explain what hemoglobin A1c is, think in simple terms. Sugar sticks, and when it's around for a long time, it's harder to get it off. In the body, sugar sticks too, particularly to proteins. The red blood cells that circulate in the body live for about three months before they die off. When sugar sticks to these hemoglobin proteins in these cells, it is known as glycosylated hemoglobin or hemoglobin A1c (HBA1c). Measurement of HBA1c gives us an idea of how much sugar is present in the bloodstream for the preceding three months. In most labs, the normal range is 4%-5.9 %. In poorly controlled diabetes, its 8.0% or above, and in well controlled patients it's less than 7.0% (optimal is <6.5%). The benefits of measuring A1c is that is gives a more reasonable and stable view of what's happening over the course of time (three months), and the value does not vary as much as finger stick blood sugar measurements. There is a direct correlation between A1c levels and average blood sugar levels as follows.
People with full-blown type 2 diabetes are not able to use the hormone insulin properly, and have what’s called insulin resistance. Insulin is necessary for glucose, or sugar, to get from your blood into your cells to be used for energy. When there is not enough insulin — or when the hormone doesn’t function as it should — glucose accumulates in the blood instead of being used by the cells. This sugar accumulation may lead to the aforementioned complications.
×