Findings from the Diabetes Control and Complications Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have clearly shown that aggressive and intensive control of elevated levels of blood sugar in patients with type 1 and type 2 diabetes decreases the complications of nephropathy, neuropathy, retinopathy, and may reduce the occurrence and severity of large blood vessel diseases. Aggressive control with intensive therapy means achieving fasting glucose levels between 70-120 mg/dl; glucose levels of less than 160 mg/dl after meals; and a near normal hemoglobin A1c levels (see below).
The brain depends on glucose as a fuel. As glucose levels drop below 65 mg/dL (3.2 mmol/L) counterregulatory hormones (eg, glucagon, cortisol, epinephrine) are released, and symptoms of hypoglycemia develop. These symptoms include sweatiness, shaking, confusion, behavioral changes, and, eventually, coma when blood glucose levels fall below 30-40 mg/dL.

Morbidity and mortality stem from the metabolic derangements and from the long-term complications that affect small and large vessels, resulting in retinopathy, nephropathy, neuropathy, ischemic heart disease, and arterial obstruction with gangrene of extremities.2 The acute clinical manifestations can be fully understood in the context of current knowledge of the secretion and action of insulin.3 Genetic and other etiologic considerations implicate autoimmune mechanisms in the evolution of the most common form of childhood diabetes, known as type 1a diabetes.4,5 Genetic defects in insulin secretion are increasingly recognized and understood as defining the causes of monogenic forms of diabetes such as maturity-onset diabetes of youth (MODY) and neonatal DM and contributing to the spectrum of T2DM.6
How to use basal insulin: Benefits, types, and dosage Basal, or background, insulin helps regulate blood sugar levels in people diagnosed with diabetes. It keeps glucose levels steady throughout the day and night. It is taken as injections, once a day or more often. The type of insulin and number of daily injections varies. Find out more about the options available. Read now
Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) refer to levels of blood glucose concentration above the normal range, but below those which are diagnostic for diabetes. Subjects with IGT and/or IFG are at substantially higher risk of developing diabetes and cardiovascular disease than those with normal glucose tolerance. The benefits of clinical intervention in subjects with moderate glucose intolerance is a topic of much current interest.
The amount of glucose in the bloodstream is tightly regulated by insulin and other hormones. Insulin is always being released in small amounts by the pancreas. When the amount of glucose in the blood rises to a certain level, the pancreas will release more insulin to push more glucose into the cells. This causes the glucose levels in the blood (blood glucose levels) to drop.

Feeling famished all the time? Your body could be trying to tell you that something’s up with your blood sugar. Many people with diabetes experience extreme hunger when their condition is unmanaged, thanks to high blood sugar levels. When your body can’t effectively convert the sugar in your blood into usable energy, this may leave you pining for every sandwich or sweet you see. And if you’re looking for a filling snack that won’t put your health at risk, enjoy one of the 25 Best and Worst Low-Sugar Protein Bars!
Family or personal history. Your risk increases if you have prediabetes — a precursor to type 2 diabetes — or if a close family member, such as a parent or sibling, has type 2 diabetes. You're also at greater risk if you had gestational diabetes during a previous pregnancy, if you delivered a very large baby or if you had an unexplained stillbirth.
Glycated hemoglobin (A1C) test. This blood test indicates your average blood sugar level for the past two to three months. It measures the percentage of blood sugar attached to hemoglobin, the oxygen-carrying protein in red blood cells. The higher your blood sugar levels, the more hemoglobin you'll have with sugar attached. An A1C level of 6.5 percent or higher on two separate tests indicates you have diabetes. A result between 5.7 and 6.4 percent is considered prediabetes, which indicates a high risk of developing diabetes. Normal levels are below 5.7 percent.
The above tips are important for you. But it's also crucial to allow yourself time to cope with the diagnosis and commit to making lifestyle changes that will benefit you forever. The good news is the diabetes is a manageable disease; the tough part is that you must think about it daily. Consider finding support—someone that you can talk to about your struggles—be that a friend, another person with diabetes, or a loved one. This may seem trivial, but it truly can help you take control of diabetes so that it doesn't control you. Some next steps that may help you to get on the right track at this early stage in your journey:
Education: People with diabetes should learn as much as possible about this condition and how to manage it. The more you know about your condition, the better prepared you are to manage it on a daily basis. Many hospitals offer diabetes education programs and many nurses and pharmacists have been certified to provide diabetes education. Contact a local hospital, doctor, or pharmacist to find out about programs and diabetes educators in your area.
Clear evidence suggests a genetic component in type 1 diabetes mellitus. Monozygotic twins have a 60% lifetime concordance for developing type 1 diabetes mellitus, although only 30% do so within 10 years after the first twin is diagnosed. In contrast, dizygotic twins have only an 8% risk of concordance, which is similar to the risk among other siblings.
Diabetes is a condition in which the body cannot properly store and use fuel for energy. The body's main fuel is a form of sugar called glucose, which comes from food (after it has been broken down). Glucose enters the blood and is used by cells for energy. To use glucose, the body needs a hormone called insulin that's made by the pancreas. Insulin is important because it allows glucose to leave the blood and enter the body's cells.
Type 1 diabetes occurs because the insulin-producing cells of the pancreas (beta cells) are damaged. In type 1 diabetes, the pancreas makes little or no insulin, so sugar cannot get into the body's cells for use as energy. People with type 1 diabetes must use insulin injections to control their blood glucose. Type 1 is the most common form of diabetes in people who are under age 30, but it can occur at any age. Ten percent of people with diabetes are diagnosed with type 1.
Diabetes mellitus is a condition in which the pancreas no longer produces enough insulin or cells stop responding to the insulin that is produced, so that glucose in the blood cannot be absorbed into the cells of the body. Symptoms include frequent urination, lethargy, excessive thirst, and hunger. The treatment includes changes in diet, oral medications, and in some cases, daily injections of insulin.
For example, the environmental trigger may be a virus or chemical toxin that upsets the normal function of the immune system. This may lead to the body’s immune system attacking itself. The normal beta cells in the pancreas may be attacked and destroyed. When approximately 90% of the beta cells are destroyed, symptoms of diabetes mellitus begin to appear. The exact cause and sequence is not fully understood but investigation and research into the disease continues.
Yet carbs are processed differently in the body based on their type: While simple carbs are digested and metabolized quickly, complex carbs take longer to go through this system, resulting in more stable blood sugar. “It comes down to their chemical forms: A simple carbohydrate has a simpler chemical makeup, so it doesn’t take as much for it to be digested, whereas the complex ones take a little longer,” Grieger explains.
Some cases of diabetes are caused by the body's tissue receptors not responding to insulin (even when insulin levels are normal, which is what separates it from type 2 diabetes); this form is very uncommon. Genetic mutations (autosomal or mitochondrial) can lead to defects in beta cell function. Abnormal insulin action may also have been genetically determined in some cases. Any disease that causes extensive damage to the pancreas may lead to diabetes (for example, chronic pancreatitis and cystic fibrosis). Diseases associated with excessive secretion of insulin-antagonistic hormones can cause diabetes (which is typically resolved once the hormone excess is removed). Many drugs impair insulin secretion and some toxins damage pancreatic beta cells. The ICD-10 (1992) diagnostic entity, malnutrition-related diabetes mellitus (MRDM or MMDM, ICD-10 code E12), was deprecated by the World Health Organization (WHO) when the current taxonomy was introduced in 1999.[53]
Type 2 diabetes (T2D) is more common than type 1 diabetes with about 90 to 95 percent of people with diabetes having T2D. According to the Centers for Disease Control and Prevention’s report, 30.3 million Americans, or 9.4% of the US population have diabetes.1 More alarming, an estimated 84 million more American adults have prediabetes, which if not treated, will advance to diabetes within five years.1
There are many complications of diabetes. Knowing and understanding the signs of these complications is important. If caught early, some of these complications can be treated and prevented from getting worse. The best way to prevent complications of diabetes is to keep your blood sugars in good control. High glucose levels produce changes in the blood vessels themselves, as well as in blood cells (primarily erythrocytes) that impair blood flow to various organs.
The most common complication of treating high blood glucose levels is low blood glucose levels (hypoglycemia). The risk is greatest for older people who are frail, who are sick enough to require frequent hospital admissions, or who are taking several drugs. Of all available drugs to treat diabetes, long-acting sulfonylurea drugs are most likely to cause low blood glucose levels in older people. When they take these drugs, they are also more likely to have serious symptoms, such as fainting and falling, and to have difficulty thinking or using parts of the body due to low blood glucose levels.
The blood glucose levels may jump after people eat foods they did not realize were high in carbohydrates. Emotional stress, an infection, and many drugs tend to increase blood glucose levels. Blood glucose levels increase in many people in the early morning hours because of the normal release of hormones (growth hormone and cortisol), a reaction called the dawn phenomenon. Blood glucose may shoot too high if the body releases certain hormones in response to low blood glucose levels (Somogyi effect). Exercise may cause the levels of glucose in the blood to fall low.
Indigestion (dyspepsia) can be caused by diseases or conditions that involve the gastrointestinal (GI) tract, and also by some diseases and conditions that do not involve the GI tract. Indigestion can be a chronic condition in which the symptoms fluctuate infrequency and intensity. Signs and symptoms that accompany indigestion include pain in the chest, upper abdominal pain, belching, nausea, bloating, abdominal distention, feeling full after eating only a small portion of food, and rarely, vomiting.

Your body is like a car—it needs fuel to function. Its primary source of fuel is glucose (sugar), which is gained from foods that contain carbohydrates that get broken down. Insulin, a hormone produced by the pancreas, takes sugar from your blood to your cells to use for energy. However, when you have diabetes, either your pancreas isn't making enough insulin or the insulin that your body is making isn't being used the way it's supposed to be, typically because the cells become resistant to it.

Don’t be alarmed: This is not diabetic retinopathy, where the blood vessels in the back of the eye are getting destroyed, says Dr. Cypess. In the early stages of diabetes, the eye lens is not focusing well because glucose builds up in the eye, which temporarily changes its shape. “You’re not going blind from diabetes,” Dr. Cypess says he assures patients. “In about six to eight weeks after your blood sugars are stabilized, you’re not going to feel it anymore; the eye will adjust.” Here are more surprising facts you never knew about diabetes.
Type 1 Diabetes: About 5 to 10 percent of those with diabetes have type 1 diabetes. It's an autoimmune disease, meaning the body's own immune system mistakenly attacks and destroys the insulin-producing cells in the pancreas. Patients with type 1 diabetes have very little or no insulin, and must take insulin everyday. Although the condition can appear at any age, typically it's diagnosed in children and young adults, which is why it was previously called juvenile diabetes.
It isn't always easy to start an exercise regimen, but once you get into a groove, you may be surprised at how much you enjoy it. Find a way to fit activity into your daily routine. Even a few minutes a day goes a long way. The American Diabetes Association recommends that adults with diabetes should perform at least 150 minutes of moderate-intensity aerobic physical activity per week (spread over at least three days with no more than two consecutive days without exercise). You don't have to start with this right away, though. Start with five to 10 minutes per day and go from there. To stay motivated, find a buddy, get a fitness tracker, or use another measurement tool that can help you see your progress.
Long-term complications arise from the damaging effects of prolonged hyperglycemia and other metabolic consequences of insulin deficiency on various tissues. Although long-term complications are rare in childhood, maintaining good control of diabetes is important to prevent complications from developing in later life. [39] The likelihood of developing complications appears to depend on the interaction of factors such as metabolic control, genetic susceptibility, lifestyle (eg, smoking, diet, exercise), pubertal status, and gender. [40, 41] Long-term complications include the following:
To explain what hemoglobin A1c is, think in simple terms. Sugar sticks, and when it's around for a long time, it's harder to get it off. In the body, sugar sticks too, particularly to proteins. The red blood cells that circulate in the body live for about three months before they die off. When sugar sticks to these hemoglobin proteins in these cells, it is known as glycosylated hemoglobin or hemoglobin A1c (HBA1c). Measurement of HBA1c gives us an idea of how much sugar is present in the bloodstream for the preceding three months. In most labs, the normal range is 4%-5.9 %. In poorly controlled diabetes, its 8.0% or above, and in well controlled patients it's less than 7.0% (optimal is <6.5%). The benefits of measuring A1c is that is gives a more reasonable and stable view of what's happening over the course of time (three months), and the value does not vary as much as finger stick blood sugar measurements. There is a direct correlation between A1c levels and average blood sugar levels as follows.
The typical symptoms of diabetes mellitus are the three “polys:” polyuria, polydipsia, and polyphagia. Because of insulin deficiency, the assimilation and storage of glucose in muscle adipose tissues, and the liver is greatly diminished. This produces an accumulation of glucose in the blood and creates an increase in its osmolarity. In response to this increased osmotic pressure there is depletion of intracellular water and osmotic diuresis. The water loss creates intense thirst and increased urination. The increased appetite (polyphagia) is not as clearly understood. It may be the result of the body's effort to increase its supply of energy foods even though eating more carbohydrates in the absence of sufficient insulin does not meet the energy needs of the cells.
Diabetes mellitus is a condition in which the pancreas no longer produces enough insulin or cells stop responding to the insulin that is produced, so that glucose in the blood cannot be absorbed into the cells of the body. Symptoms include frequent urination, lethargy, excessive thirst, and hunger. The treatment includes changes in diet, oral medications, and in some cases, daily injections of insulin.
There is evidence that certain emotions can promote type 2 diabetes. A recent study found that depression seems to predispose people to diabetes. Other research has tied emotional stress to diabetes, though the link hasn't been proved. Researchers speculate that the emotional connection may have to do with the hormone cortisol, which floods the body during periods of stress. Cortisol sends glucose to the blood, where it can fuel a fight-or-flight response, but overuse of this system may lead to dysfunction.
Apart from these medications, treating diabetes effectively means taking a well-rounded approach: You’ll need to eat well, exercise, and manage stress, because all these factors can affect your blood sugar levels. Staying healthy with diabetes also requires caring for yourself — like protecting your feet, practicing oral hygiene, and tending to your mental health.

Get to Know Your Medications: If you have diabetes, it is important to know and understand what your medications do. This can help to keep blood sugars controlled and prevent low and high blood sugars. Certain medicines need to be taken with food, or they will cause your blood sugar will drop. There are so many diabetes medications out there. Being your own advocate can help you. Make sure to tell your doctor if your medications are too expensive or if they are causing any side effects. If your medication regimen is not working for you, odds are your doctor can find a new medicine that might work better.
Diet management is very important in people with both types of diabetes mellitus. Doctors recommend a healthy, balanced diet and efforts to maintain a healthy weight. People with diabetes can benefit from meeting with a dietitian or a diabetes educator to develop an optimal eating plan. Such a plan includes avoiding simple sugars and processed foods, increasing dietary fiber, limiting portions of carbohydrate-rich, and fatty foods (especially saturated fats). People who are taking insulin should avoid long periods between meals to prevent hypoglycemia. Although protein and fat in the diet contribute to the number of calories a person eats, only the number of carbohydrates has a direct effect on blood glucose levels. The American Diabetes Association has many helpful tips on diet, including recipes. Even when people follow a proper diet, cholesterol-lowering drugs are needed to decrease the risk of heart disease (see recommendations).

Excessive thirst typically goes hand-in-hand with increased urination. As your body pulls water out of the tissues to dilute your blood and to rid your body of sugar through the urine, the urge to drink increases. Many people describe this thirst as an unquenchable one. To stay hydrated, you drink excessive amounts of liquids. And if those liquids contain simple sugars (soda, sweet iced tea, lemonade, or juice, for example) your sugars will skyrocket even higher.

Childhood obesity rates are rising, and so are the rates of type 2 diabetes in youth. More than 75% of children with type 2 diabetes have a close relative who has it, too. But it’s not always because family members are related; it can also be because they share certain habits that can increase their risk. Parents can help prevent or delay type 2 diabetes by developing a plan for the whole family:

Dr. Shiel received a Bachelor of Science degree with honors from the University of Notre Dame. There he was involved in research in radiation biology and received the Huisking Scholarship. After graduating from St. Louis University School of Medicine, he completed his Internal Medicine residency and Rheumatology fellowship at the University of California, Irvine. He is board-certified in Internal Medicine and Rheumatology.
Prediabetes is a condition in which blood glucose levels are too high to be considered normal but not high enough to be labeled diabetes. People have prediabetes if their fasting blood glucose level is between 100 mg/dL and 125 mg/dL or if their blood glucose level 2 hours after a glucose tolerance test is between 140 mg/dL and 199 mg/dL. Prediabetes carries a higher risk of future diabetes as well as heart disease. Decreasing body weight by 5 to 10% through diet and exercise can significantly reduce the risk of developing future diabetes.
Hypoglycemia, or low blood sugar, can be caused by too much insulin, too little food (or eating too late to coincide with the action of the insulin), alcohol consumption, or increased exercise. A patient with symptoms of hypoglycemia may be hungry, cranky, confused, and tired. The patient may become sweaty and shaky. Left untreated, the patient can lose consciousness or have a seizure. This condition is sometimes called an insulin reaction and should be treated by giving the patient something sweet to eat or drink like a candy, sugar cubes, juice, or another high sugar snack.
Diabetes mellitus is a group of metabolic diseases characterized by high blood sugar (glucose) levels that result from defects in insulin secretion, or its action, or both. Diabetes mellitus, commonly referred to as diabetes (as it will be in this article) was first identified as a disease associated with "sweet urine," and excessive muscle loss in the ancient world. Elevated levels of blood glucose (hyperglycemia) lead to spillage of glucose into the urine, hence the term sweet urine.
So what determines where fat is stored, and thus a person's propensity for insulin resistance and type 2 diabetes? Well, just having more fat in the body increases the risk that some of it will get misplaced. But exercise may also have a role in fat placement. Exercise is known to reduce insulin resistance; one way it may do this is by burning fat out of the muscle. Because of this, getting enough exercise may stave off type 2 in some cases. Genes may also help orchestrate the distribution of fat in the body, which illustrates how lifestyle and genetics interact.
*MDVIP respects your privacy and will only use your personal information as stated in our Privacy Policy and Terms of Use. By providing your number, you are giving your express written consent to receive telemarketing calls or text messages using an automatic phone dialing system or an artificial or prerecorded voice at that number. You can contact us at any time if you wish to stop receiving such messages.
Elevated homocysteine levels in the blood called hyperhomocysteinemia, is a sign that the body isn't producing enough of the amino acid homocysteine. is a rare and serious condition that may be inherited (genetic). People with homocystinuria die at an early age. Symptoms of hyperhomocysteinemia include developmental delays, osteoporosis, blood clots, heart attack, heart disease, stroke, and visual abnormalities.
Jump up ^ Qaseem, Amir; Wilt, Timothy J.; Kansagara, Devan; Horwitch, Carrie; Barry, Michael J.; Forciea, Mary Ann (6 March 2018). "Hemoglobin A Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults With Type 2 Diabetes Mellitus: A Guidance Statement Update From the American College of Physicians". Annals of Internal Medicine. doi:10.7326/M17-0939.
In the sunshine, molecules in the skin are converted to vitamin D. But people stay indoors more these days, which could lead to vitamin D deficiency. Research shows that if mice are deprived of vitamin D, they are more likely to become diabetic. In people, observational studies have also found a correlation between D deficiency and type 1. "If you don't have enough D, then [your immune system] doesn't function like it should," says Chantal Mathieu, MD, PhD, a professor of experimental medicine and endocrinology at Katholieke Universiteit Leuven in Belgium. "Vitamin D is not the cause of type 1 diabetes. [But] if you already have a risk, you don't want to have vitamin D deficiency on board because that's going to be one of the little pushes that pushes you in the wrong direction."
Being too heavy gets the bulk of the blame for triggering type 2 diabetes. According to the National Institutes of Health, about 85 percent of people with type 2 diabetes are overweight or obese. But consider that the remaining 15 percent are not. Consider, too, that roughly two-thirds of overweight people and a third of those who are obese will never develop diabetes. In other words, normal-weight and thin people also develop type 2, while heavy people won't necessarily. Clearly, there is more to the connection between lifestyle and type 2 diabetes than just body size.
Visual impairment and blindness are common sequelae of uncontrolled diabetes. The three most frequently occurring problems involving the eye are diabetic retinopathy, cataracts, and glaucoma. photocoagulation of destructive lesions of the retina with laser beams can be used to delay further progress of pathologic changes and thereby preserve sight in the affected eye.
The blood vessels and blood are the highways that transport sugar from where it is either taken in (the stomach) or manufactured (in the liver) to the cells where it is used (muscles) or where it is stored (fat). Sugar cannot go into the cells by itself. The pancreas releases insulin into the blood, which serves as the helper, or the "key," that lets sugar into the cells for use as energy.

You may be able to manage your type 2 diabetes with healthy eating and being active, or your doctor may prescribe insulin, other injectable medications, or oral diabetes medicines to help control your blood sugar and avoid complications. You’ll still need to eat healthy and be active if you take insulin or other medicines. It’s also important to keep your blood pressure and cholesterol under control and get necessary screening tests.
As of 2016, 422 million people have diabetes worldwide,[101] up from an estimated 382 million people in 2013[17] and from 108 million in 1980.[101] Accounting for the shifting age structure of the global population, the prevalence of diabetes is 8.5% among adults, nearly double the rate of 4.7% in 1980.[101] Type 2 makes up about 90% of the cases.[16][18] Some data indicate rates are roughly equal in women and men,[18] but male excess in diabetes has been found in many populations with higher type 2 incidence, possibly due to sex-related differences in insulin sensitivity, consequences of obesity and regional body fat deposition, and other contributing factors such as high blood pressure, tobacco smoking, and alcohol intake.[102][103]
Dr. Erica Oberg, ND, MPH, received a BA in anthropology from the University of Colorado, her doctorate of naturopathic medicine (ND) from Bastyr University, and a masters of public health (MPH) in health services research from the University of Washington. She completed her residency at the Bastyr Center for Natural Health in ambulatory primary care and fellowship training at the Health Promotion Research Center at the University of Washington.
Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar. There is variability in its manifestations, wherein some individuals have only asymptomatic glucose intolerance, while others present acutely with diabetic ketoacidosis, and still others develop chronic complications such as nephropathy, neuropathy, retinopathy, or accelerated atherosclerosis. It is among the most common of chronic disorders, affecting up to 5–10% of the adult population of the Western world. Its prevalence varies over the globe, with certain populations, including some American Indian tribes and the inhabitants of Micronesia and Polynesia, having extremely high rates of diabetes (1,2). The prevalence of diabetes is increasing dramatically and it has been estimated that the worldwide prevalence will increase by more than 50% between the years 2000 and 2030 (3).
A chronic metabolic disorder marked by hyperglycemia. DM results either from failure of the pancreas to produce insulin (type 1 DM) or from insulin resistance, with inadequate insulin secretion to sustain normal metabolism (type 2 DM). Either type of DM may damage blood vessels, nerves, kidneys, the retina, and the developing fetus and the placenta during pregnancy. Type 1 or insulin-dependent DM has a prevalence of just 0.3 to 0.4%. Type 2 DM (formerly called adult-onset DM) has a prevalence in the general population of 6.6%. In some populations (such as older persons, Native Americans, African Americans, Pacific Islanders, Mexican Americans), it is present in nearly 20% of adults. Type 2 DM primarily affects obese middle-aged people with sedentary lifestyles, whereas type 1 DM usually occurs in children, most of whom are active and thin, although extremely obese children are now being diagnosed with type 2 diabetes as well. See: table; dawn phenomenon; insulin; insulin pump; insulin resistance; diabetic polyneuropathy; Somogyi phenomenon
Diabetes is a condition in which the body cannot properly store and use fuel for energy. The body's main fuel is a form of sugar called glucose, which comes from food (after it has been broken down). Glucose enters the blood and is used by cells for energy. To use glucose, the body needs a hormone called insulin that's made by the pancreas. Insulin is important because it allows glucose to leave the blood and enter the body's cells.

Jump up ^ Boussageon, R; Bejan-Angoulvant, T; Saadatian-Elahi, M; Lafont, S; Bergeonneau, C; Kassaï, B; Erpeldinger, S; Wright, JM; Gueyffier, F; Cornu, C (2011-07-26). "Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials". The BMJ. 343: d4169. doi:10.1136/bmj.d4169. PMC 3144314. PMID 21791495.
Clinical Manifestations. Diabetes mellitus can present a wide variety of symptoms, from none at all to profound ketosis and coma. If the disease manifests itself late in life, patients may not know they have it until it is discovered during a routine examination, or when the symptoms of chronic vascular disease, insidious renal failure, or impaired vision cause them to seek medical help.
The pain of diabetic nerve damage may respond to traditional treatments with certain medications such as gabapentin (Neurontin), phenytoin (Dilantin), and carbamazepine (Tegretol) that are traditionally used in the treatment of seizure disorders. Amitriptyline (Elavil, Endep) and desipramine (Norpraminine) are medications that are traditionally used for depression. While many of these medications are not indicated specifically for the treatment of diabetes related nerve pain, they are used by physicians commonly.

Yes. In fact, being sick can actually make the body need more diabetes medicine. If you take insulin, you might have to adjust your dose when you're sick, but you still need to take insulin. People with type 2 diabetes may need to adjust their diabetes medicines when they are sick. Talk to your diabetes health care team to be sure you know what to do.

Diabetes has often been referred to as a "silent disease" for two reasons: 1) Many people with Type 2 diabetes walk around with symptoms for many years, but are not diagnosed until they develop a complication of the disease, such as blindness, kidney disease, or heart disease; 2) There are no specific physical manifestations in individuals with diabetes.  Therefore, unless a person chooses to disclose their disease, it is possible that friends and even family members may be unaware of a person's diagnosis.
×