In type 1 diabetes (formerly called insulin-dependent diabetes or juvenile-onset diabetes), the body's immune system attacks the insulin-producing cells of the pancreas, and more than 90% of them are permanently destroyed. The pancreas, therefore, produces little or no insulin. Only about 5 to 10% of all people with diabetes have type 1 disease. Most people who have type 1 diabetes develop the disease before age 30, although it can develop later in life.
Insulin is a hormone made by your pancreas that acts like a key to let blood sugar into the cells in your body for use as energy. If you have type 2 diabetes, cells don’t respond normally to insulin; this is called insulin resistance. Your pancreas makes more insulin to try to get cells to respond. Eventually your pancreas can’t keep up, and your blood sugar rises, setting the stage for prediabetes and type 2 diabetes. High blood sugar is damaging to the body and can cause other serious health problems, such as heart disease, vision loss, and kidney disease.
Constant advances are being made in development of new oral medications for persons with diabetes. In 2003, a drug called Metaglip combining glipizide and metformin was approved in a dingle tablet. Along with diet and exercise, the drug was used as initial therapy for Type 2 diabetes. Another drug approved by the U.S. Food and Drug Administration (FDA) combines metformin and rosiglitazone (Avandia), a medication that increases muscle cells' sensitivity to insulin. It is marketed under the name Avandamet. So many new drugs are under development that it is best to stay in touch with a physician for the latest information; physicians can find the best drug, diet and exercise program to fit an individual patient's need.

Blood travels throughout your body, and when too much glucose (sugar) is present, it disrupts the normal environment that the organ systems of your body function within. In turn, your body starts to exhibit signs that things are not working properly inside—those are the symptoms of diabetes people sometimes experience. If this problem—caused by a variety of factors—is left untreated, it can lead to a number of damaging complications such as heart attacks, strokes, blindness, kidney failure, and blood vessel disease that may require an amputation, nerve damage, and impotence in men.
Diabetes also can cause heart disease and stroke, as well as other long-term complications, including eye problems, kidney disease, nerve damage, and gum disease. While these problems don't usually show up in kids or teens who've had type 2 diabetes for only a few years, they can affect them in adulthood, particularly if their diabetes isn't well controlled.
Recognizing the symptoms of Type 1 diabetes is critical. Although Type 1 develops gradually, as the body’s insulin production decreases, blood glucose levels can become dangerously high once insulin production is outpaced. Symptoms may develop rapidly and can be mistaken for other illnesses such as the flu and a delayed diagnosis can have serious consequences.
Regular insulin is fast-acting and starts to work within 15-30 minutes, with its peak glucose-lowering effect about two hours after it is injected. Its effects last for about four to six hours. NPH (neutral protamine Hagedorn) and Lente insulin are intermediate-acting, starting to work within one to three hours and lasting up to 18-26 hours. Ultra-lente is a long-acting form of insulin that starts to work within four to eight hours and lasts 28-36 hours.
n a metabolic disorder caused primarily by a defect in the production of insulin by the islet cells of the pancreas, resulting in an inability to use carbohydrates. Characterized by hyperglycemia, glycosuria, polyuria, hyperlipemia (caused by imperfect catabolism of fats), acidosis, ketonuria, and a lowered resistance to infection. Periodontal manifestations if blood sugar is not being controlled may include recurrent and multiple periodontal abscesses, osteoporotic changes in alveolar bone, fungating masses of granulation tissue protruding from periodontal pockets, a lowered resistance to infection, and delay in healing after periodontal therapy. See also blood glucose level(s).
Often people don't experience symptoms of diabetes until their blood sugars are very high. Symptoms of diabetes include: increased thirst, increased urination, increased hunger, extreme fatigues, numbness and tingling in the extremities (hands and feet), cuts and wounds that are slow to heal, and blurred vision. Some people also experience other less common symptoms including weight loss, dry itchy skin, increased yeast infections, erectile dysfunction, and acanthosis nigricans (thick, "velvety" patches found in the folds or creases of skin, such as the neck, that is indicative of insulin resistance).
Diagnosis. The most common diagnostic tests for diabetes are chemical analyses of the blood such as the fasting plasma glucose. Capillary blood glucose monitoring can be used for screening large segments of the population. Portable equipment is available and only one drop of blood from the fingertip or earlobe is necessary. Capillary blood glucose levels have largely replaced analysis of the urine for glucose. Testing for urinary glucose can be problematic as the patient may have a high renal threshold, which would lead to a negative reading for urinary glucose when in fact the blood glucose level was high.

There are many types of sugar. Some sugars are simple, and others are complex. Table sugar (sucrose) is made of two simpler sugars called glucose and fructose. Milk sugar (lactose) is made of glucose and a simple sugar called galactose. The carbohydrates in starches, such as bread, pasta, rice, and similar foods, are long chains of different simple sugar molecules. Sucrose, lactose, carbohydrates, and other complex sugars must be broken down into simple sugars by enzymes in the digestive tract before the body can absorb them.


Type 1 diabetes mellitus is predominantly a disease of the young, usually developing before 20 years of age. Overall, type I DM makes up approximately 15% of all cases of diabetes. It develops in approximately 1 in 600 children and is one of the most common chronic diseases in children. The incidence is relatively low for children under the age of 5, increases between 5 and 15, and then tapers off.
The causes of diabetes mellitus are unclear, however, there seem to be both hereditary (genetic factors passed on in families) and environmental factors involved. Research has shown that some people who develop diabetes have common genetic markers. In Type I diabetes, the immune system, the body's defense system against infection, is believed to be triggered by a virus or another microorganism that destroys cells in the pancreas that produce insulin. In Type II diabetes, age, obesity, and family history of diabetes play a role.
One of the key factors in Joslin’s treatment of diabetes is tight blood glucose control, so be certain that your treatment helps get your blood glucose readings as close to normal as safely possible. Patients should discuss with their doctors what their target blood glucose range is. It is also important to determine what your goal is for A1C readings (a test that determines how well your diabetes is controlled over the past 2-3 months). By maintaining blood glucose in the desired range, you’ll likely avoid many of the complications some people with diabetes face.
Occasionally, a child with hypoglycemic coma may not recover within 10 minutes, despite appropriate therapy. Under no circumstances should further treatment be given, especially intravenous glucose, until the blood glucose level is checked and still found to be subnormal. Overtreatment of hypoglycemia can lead to cerebral edema and death. If coma persists, seek other causes.
There are some interesting developments in blood glucose monitoring including continuous glucose sensors. The new continuous glucose sensor systems involve an implantable cannula placed just under the skin in the abdomen or in the arm. This cannula allows for frequent sampling of blood glucose levels. Attached to this is a transmitter that sends the data to a pager-like device. This device has a visual screen that allows the wearer to see, not only the current glucose reading, but also the graphic trends. In some devices, the rate of change of blood sugar is also shown. There are alarms for low and high sugar levels. Certain models will alarm if the rate of change indicates the wearer is at risk for dropping or rising blood glucose too rapidly. One version is specifically designed to interface with their insulin pumps. In most cases the patient still must manually approve any insulin dose (the pump cannot blindly respond to the glucose information it receives, it can only give a calculated suggestion as to whether the wearer should give insulin, and if so, how much). However, in 2013 the US FDA approved the first artificial pancreas type device, meaning an implanted sensor and pump combination that stops insulin delivery when glucose levels reach a certain low point. All of these devices need to be correlated to fingersticks measurements for a few hours before they can function independently. The devices can then provide readings for 3 to 5 days.
Most pediatric patients with diabetes have type 1 diabetes mellitus (T1DM) and a lifetime dependence on exogenous insulin. Diabetes mellitus (DM) is a chronic metabolic disorder caused by an absolute or relative deficiency of insulin, an anabolic hormone. Insulin is produced by the beta cells of the islets of Langerhans located in the pancreas, and the absence, destruction, or other loss of these cells results in type 1 diabetes (insulin-dependent diabetes mellitus [IDDM]). A possible mechanism for the development of type 1 diabetes is shown in the image below. (See Etiology.)
Type 2 (formerly called 'adult-onset' or 'non insulin-dependent') diabetes results when the body doesn’t produce enough insulin and/or is unable to use insulin properly (this is also referred to as ‘insulin resistance’). This form of diabetes usually occurs in people who are over 40 years of age, overweight, and have a family history of diabetes, although today it is increasingly found in younger people.
The word diabetes (/ˌdaɪ.əˈbiːtiːz/ or /ˌdaɪ.əˈbiːtɪs/) comes from Latin diabētēs, which in turn comes from Ancient Greek διαβήτης (diabētēs), which literally means "a passer through; a siphon".[111] Ancient Greek physician Aretaeus of Cappadocia (fl. 1st century CE) used that word, with the intended meaning "excessive discharge of urine", as the name for the disease.[112][113] Ultimately, the word comes from Greek διαβαίνειν (diabainein), meaning "to pass through,"[111] which is composed of δια- (dia-), meaning "through" and βαίνειν (bainein), meaning "to go".[112] The word "diabetes" is first recorded in English, in the form diabete, in a medical text written around 1425.
Fasting glucose test This test involves giving a blood sample after you have fasted for eight hours. (18) If you have a fasting blood sugar level of less than 100 milligrams per deciliter (mg/dl), your blood sugar levels are normal. But if you have one from 100 to 125 mg/dl, you have prediabetes, and if you have 126 mg/dl on two separate occasions, you have diabetes. (17)
If you find that you are a little rusty and could use a refresher course in nutrition or anything else related to diabetes, consider signing up for a diabetes conversation map class. These classes are a good way to re-learn key components of diabetes in a group setting. If you have adequate knowledge and are instead looking for ways to make your life easier, check out some apps, nutrition resources, or fitness trackers that can help you stay moving and cook healthy meals. Keeping up the good work is worth it, as it can help prevent complications.
Hemoglobin A1c or HbA1c is a protein on the surface of red blood cells. The HbA1c test is used to monitor blood sugar levels in people with type 1 and type 2 diabetes over time. Normal HbA1c levels are 6% or less. HbA1c levels can be affected by insulin use, fasting, glucose intake (oral or IV), or a combination of these and other factors. High hemoglobin A1c levels in the blood increases the risk of microvascular complications, for example, diabetic neuropathy, eye, and kidney disease.
Diabetes may have symptoms in some people, and no symptoms in others. Generally, people with Type 1 diabetes have increased thirst (polydipsia), frequent urination (polyuria), and increased hunger (polyphagia). Symptoms may develop over weeks to months.  Untreated, this condition may cause a person to lose consciousness and become very ill (diabetic ketoacidosis).
diabetes mel´litus a broadly applied term used to denote a complex group of syndromes that have in common a disturbance in the oxidation and utilization of glucose, which may be secondary to a malfunction of the beta cells of the pancreas, whose function is the production and release of insulin. Because insulin is involved in the metabolism of carbohydrates, proteins, and fats, diabetes is not limited to a disturbance of glucose homeostasis alone. Insulin resistance may also sometimes play a role in the etiology of diabetes. 
Type 1 diabetes mellitus is predominantly a disease of the young, usually developing before 20 years of age. Overall, type I DM makes up approximately 15% of all cases of diabetes. It develops in approximately 1 in 600 children and is one of the most common chronic diseases in children. The incidence is relatively low for children under the age of 5, increases between 5 and 15, and then tapers off.
Lose Weight: If you are overweight, losing weight can help your body use insulin. In fact, the American Diabetes Association recommends that people with diabetes lose about 7 percent of their body weight, which should improve the way your body uses insulin and reduces insulin resistance. In addition, weight loss can help lower blood pressure, reduce joint pain, increase energy, and reduce sleep apnea and cholesterol. It can also reduce your risk of other diseases, including heart disease.
While there are competing explanations of the link between obesity and type 2 diabetes, Gerald Shulman, MD, PhD, a professor of internal medicine and physiology at Yale University, believes the key is figuring out insulin resistance. He has studied the causes of insulin resistance for 25 years and thinks he may have the answer to the weight-diabetes link.
Oral medications are available to lower blood glucose in Type II diabetics. In 1990, 23.4 outpatient prescriptions for oral antidiabetic agents were dispensed. By 2001, the number had increased to 91.8 million prescriptions. Oral antidiabetic agents accounted for more than $5 billion dollars in worldwide retail sales per year in the early twenty-first century and were the fastest-growing segment of diabetes drugs. The drugs first prescribed for Type II diabetes are in a class of compounds called sulfonylureas and include tolbutamide, tolazamide, acetohexamide, and chlorpropamide. Newer drugs in the same class are now available and include glyburide, glimeperide, and glipizide. How these drugs work is not well understood, however, they seem to stimulate cells of the pancreas to produce more insulin. New medications that are available to treat diabetes include metformin, acarbose, and troglitizone. The choice of medication depends in part on the individual patient profile. All drugs have side effects that may make them inappropriate for particular patients. Some for example, may stimulate weight gain or cause stomach irritation, so they may not be the best treatment for someone who is already overweight or who has stomach ulcers. Others, like metformin, have been shown to have positive effects such as reduced cardiovascular mortality, but but increased risk in other situations. While these medications are an important aspect of treatment for Type II diabetes, they are not a substitute for a well planned diet and moderate exercise. Oral medications have not been shown effective for Type I diabetes, in which the patient produces little or no insulin.
Patients need to ensure that their blood glucose levels are kept as normal as possible so that delicate tissues in the body (especially blood vessels in the eyes, kidneys and peripheral nerves) are not damaged by high glucose levels over a long period of time. To achieve this, patients need to measure their glucose regularly and learn how to adjust their insulin doses in order to optimise their glucose levels (diabetes control). Good diabetes control helps to minimise the risk of long-term diabetes complications, as well as short-term symptoms (such as thirst).

The progression of nephropathy in patients can be significantly slowed by controlling high blood pressure, and by aggressively treating high blood sugar levels. Angiotensin converting enzyme inhibitors (ACE inhibitors) or angiotensin receptor blockers (ARBs) used in treating high blood pressure may also benefit kidney disease in patients with diabetes.

We give you special kudos for managing your condition, as it is not always easy. If you've had diabetes for a long time, it's normal to burn out sometimes. You may get tired of your day to day tasks, such as counting carbohydrates or measuring your blood sugar. Lean on a loved one or a friend for support, or consider talking to someone else who has diabetes who can provide, perhaps, an even more understanding ear or ideas that can help you.
Often people don't experience symptoms of diabetes until their blood sugars are very high. Symptoms of diabetes include: increased thirst, increased urination, increased hunger, extreme fatigues, numbness and tingling in the extremities (hands and feet), cuts and wounds that are slow to heal, and blurred vision. Some people also experience other less common symptoms including weight loss, dry itchy skin, increased yeast infections, erectile dysfunction, and acanthosis nigricans (thick, "velvety" patches found in the folds or creases of skin, such as the neck, that is indicative of insulin resistance).
Diabetic foot disease, due to changes in blood vessels and nerves, often leads to ulceration and subsequent limb amputation. It is one of the most costly complications of diabetes, especially in communities with inadequate footwear. It results from both vascular and neurological disease processes. Diabetes is the most common cause of non-traumatic amputation of the lower limb, which may be prevented by regular inspection and good care of the foot.

People with glucose levels between normal and diabetic have impaired glucose tolerance (IGT) or insulin resistance. People with impaired glucose tolerance do not have diabetes, but are at high risk for progressing to diabetes. Each year, 1% to 5% of people whose test results show impaired glucose tolerance actually eventually develop diabetes. Weight loss and exercise may help people with impaired glucose tolerance return their glucose levels to normal. In addition, some physicians advocate the use of medications, such as metformin (Glucophage), to help prevent/delay the onset of overt diabetes.
For example, the environmental trigger may be a virus or chemical toxin that upsets the normal function of the immune system. This may lead to the body’s immune system attacking itself. The normal beta cells in the pancreas may be attacked and destroyed. When approximately 90% of the beta cells are destroyed, symptoms of diabetes mellitus begin to appear. The exact cause and sequence is not fully understood but investigation and research into the disease continues.
Occasionally, a child with hypoglycemic coma may not recover within 10 minutes, despite appropriate therapy. Under no circumstances should further treatment be given, especially intravenous glucose, until the blood glucose level is checked and still found to be subnormal. Overtreatment of hypoglycemia can lead to cerebral edema and death. If coma persists, seek other causes.

A number of studies have looked for relationships between sugar and diabetes risk. A 2017 meta-analysis, based on nine reports of 15 cohort studies including 251,261 participants, found no significant effect of total sugars on the risk of developing type 2 diabetes.7 Those consuming the most sugar actually had a 9 percent lower risk of developing diabetes, compared with those consuming the least sugar, although the difference was not statistically significant (meaning that it could have been a chance result). Similarly, fructose was not significantly associated with diabetes risk. Sucrose appeared to have a significant protective association. Those consuming the most sucrose had 11 percent less risk of developing type 2 diabetes, compared with those consuming the least.

Keeping track of the number of calories provided by different foods can become complicated, so patients usually are advised to consult a nutritionist or dietitian. An individualized, easy to manage diet plan can be set up for each patient. Both the American Diabetes Association and the American Dietetic Association recommend diets based on the use of food exchange lists. Each food exchange contains a known amount of calories in the form of protein, fat, or carbohydrate. A patient's diet plan will consist of a certain number of exchanges from each food category (meat or protein, fruits, breads and starches, vegetables, and fats) to be eaten at meal times and as snacks. Patients have flexibility in choosing which foods they eat as long as they stick with the number of exchanges prescribed.
Examples of simple or refined carbohydrates, on the other hand, exist in various forms — from the sucrose in the table sugar you use to bake cookies, to the various kinds of added sugar in packaged snacks, fruit drinks, soda, and cereal. Simple carbohydrates are natural components of many fresh foods, too, such as the lactose in milk and the fructose in fruits, and therefore, a healthy, well-balanced diet will always contain these types of sugars.
Diabetic retinopathy is a leading cause of blindness and visual disability. Diabetes mellitus is associated with damage to the small blood vessels in the retina, resulting in loss of vision. Findings, consistent from study to study, make it possible to suggest that, after 15 years of diabetes, approximately 2% of people become blind, while about 10% develop severe visual handicap. Loss of vision due to certain types of glaucoma and cataract may also be more common in people with diabetes than in those without the disease.
Regarding age, data shows that for each decade after 40 years of age regardless of weight there is an increase in incidence of diabetes. The prevalence of diabetes in persons 65 years of age and older is around 25%. Type 2 diabetes is also more common in certain ethnic groups. Compared with a 7% prevalence in non-Hispanic Caucasians, the prevalence in Asian Americans is estimated to be 8.0%, in Hispanics 13%, in blacks around 12.3%, and in certain Native American communities 20% to 50%. Finally, diabetes occurs much more frequently in women with a prior history of diabetes that develops during pregnancy (gestational diabetes).
While there is a strong genetic component to developing this form of diabetes, there are other risk factors - the most significant of which is obesity. There is a direct relationship between the degree of obesity and the risk of developing type 2 diabetes, and this holds true in children as well as adults. It is estimated that the chance to develop diabetes doubles for every 20% increase over desirable body weight.
The development of type 2 diabetes is caused by a combination of lifestyle and genetic factors.[24][26] While some of these factors are under personal control, such as diet and obesity, other factors are not, such as increasing age, female gender, and genetics.[10] A lack of sleep has been linked to type 2 diabetes.[27] This is believed to act through its effect on metabolism.[27] The nutritional status of a mother during fetal development may also play a role, with one proposed mechanism being that of DNA methylation.[28] The intestinal bacteria Prevotella copri and Bacteroides vulgatus have been connected with type 2 diabetes.[29]

People with type 1 diabetes and certain people with type 2 diabetes may use carbohydrate counting or the carbohydrate exchange system to match their insulin dose to the carbohydrate content of their meal. "Counting" the amount of carbohydrate in a meal is used to calculate the amount of insulin the person takes before eating. However, the carbohydrate-to-insulin ratio (the amount of insulin taken for each gram of carbohydrate in the meal) varies for each person, and people with diabetes need to work closely with a dietician who has experience in working with people with diabetes to master the technique. Some experts have advised use of the glycemic index (a measure of the impact of an ingested carbohydrate-containing food on the blood glucose level) to delineate between rapid and slowly metabolized carbohydrates, although there is little evidence to support this approach.


A study by Chan et al indicated that in pediatric patients with type 1 diabetes, the presence of hypoglycemia is a sign of decreased insulin sensitivity, while hyperglycemia in these patients, especially overnight, signals improved sensitivity to insulin. In contrast, the investigators found evidence that in pediatric patients with type 2 diabetes, markers of metabolic syndrome and hyperglycemia are associated with reduced insulin sensitivity. Patients in the study were between ages 12 and 19 years. [23]


The development of type 2 diabetes is caused by a combination of lifestyle and genetic factors.[24][26] While some of these factors are under personal control, such as diet and obesity, other factors are not, such as increasing age, female gender, and genetics.[10] A lack of sleep has been linked to type 2 diabetes.[27] This is believed to act through its effect on metabolism.[27] The nutritional status of a mother during fetal development may also play a role, with one proposed mechanism being that of DNA methylation.[28] The intestinal bacteria Prevotella copri and Bacteroides vulgatus have been connected with type 2 diabetes.[29]
Onset of type 2 diabetes can be delayed or prevented through proper nutrition and regular exercise.[60][61] Intensive lifestyle measures may reduce the risk by over half.[24][62] The benefit of exercise occurs regardless of the person's initial weight or subsequent weight loss.[63] High levels of physical activity reduce the risk of diabetes by about 28%.[64] Evidence for the benefit of dietary changes alone, however, is limited,[65] with some evidence for a diet high in green leafy vegetables[66] and some for limiting the intake of sugary drinks.[32] In those with impaired glucose tolerance, diet and exercise either alone or in combination with metformin or acarbose may decrease the risk of developing diabetes.[24][67] Lifestyle interventions are more effective than metformin.[24] A 2017 review found that, long term, lifestyle changes decreased the risk by 28%, while medication does not reduce risk after withdrawal.[68] While low vitamin D levels are associated with an increased risk of diabetes, correcting the levels by supplementing vitamin D3 does not improve that risk.[69]
A 2018 study suggested that three types should be abandoned as too simplistic.[57] It classified diabetes into five subgroups, with what is typically described as type 1 and autoimmune late-onset diabetes categorized as one group, whereas type 2 encompasses four categories. This is hoped to improve diabetes treatment by tailoring it more specifically to the subgroups.[58]

Keeping track of the number of calories provided by different foods can become complicated, so patients usually are advised to consult a nutritionist or dietitian. An individualized, easy to manage diet plan can be set up for each patient. Both the American Diabetes Association and the American Dietetic Association recommend diets based on the use of food exchange lists. Each food exchange contains a known amount of calories in the form of protein, fat, or carbohydrate. A patient's diet plan will consist of a certain number of exchanges from each food category (meat or protein, fruits, breads and starches, vegetables, and fats) to be eaten at meal times and as snacks. Patients have flexibility in choosing which foods they eat as long as they stick with the number of exchanges prescribed.


A positive result, in the absence of unequivocal high blood sugar, should be confirmed by a repeat of any of the above methods on a different day. It is preferable to measure a fasting glucose level because of the ease of measurement and the considerable time commitment of formal glucose tolerance testing, which takes two hours to complete and offers no prognostic advantage over the fasting test.[66] According to the current definition, two fasting glucose measurements above 7.0 mmol/l (126 mg/dl) is considered diagnostic for diabetes mellitus.
In Type II diabetes, the pancreas may produce enough insulin, however, cells have become resistant to the insulin produced and it may not work as effectively. Symptoms of Type II diabetes can begin so gradually that a person may not know that he or she has it. Early signs are lethargy, extreme thirst, and frequent urination. Other symptoms may include sudden weight loss, slow wound healing, urinary tract infections, gum disease, or blurred vision. It is not unusual for Type II diabetes to be detected while a patient is seeing a doctor about another health concern that is actually being caused by the yet undiagnosed diabetes.
Abnormal cholesterol and triglyceride levels. If you have low levels of high-density lipoprotein (HDL), or "good," cholesterol, your risk of type 2 diabetes is higher. Triglycerides are another type of fat carried in the blood. People with high levels of triglycerides have an increased risk of type 2 diabetes. Your doctor can let you know what your cholesterol and triglyceride levels are.
×