Dietary factors also influence the risk of developing type 2 DM. Consumption of sugar-sweetened drinks in excess is associated with an increased risk.[46][47] The type of fats in the diet is also important, with saturated fat and trans fats increasing the risk and polyunsaturated and monounsaturated fat decreasing the risk.[45] Eating lots of white rice, and other starches, also may increase the risk of diabetes.[48] A lack of physical activity is believed to cause 7% of cases.[49]

High blood sugar levels (hyperglycemia) can lead to a condition called glucose toxicity. This leads to further damage to the pancreas, and the body is less able to produce insulin. Without insulin, glucose levels continue to rise to levels that can cause damage to organs such as the eyes, nerves, and kidneys. These problems are similar to the complications associated with type 1 diabetes.
The above tips are important for you. But it's also crucial to allow yourself time to cope with the diagnosis and commit to making lifestyle changes that will benefit you forever. The good news is the diabetes is a manageable disease; the tough part is that you must think about it daily. Consider finding support—someone that you can talk to about your struggles—be that a friend, another person with diabetes, or a loved one. This may seem trivial, but it truly can help you take control of diabetes so that it doesn't control you. Some next steps that may help you to get on the right track at this early stage in your journey:
“I don’t think that anybody has put their finger on what the true cause of diabetes is, or that we’re going to find a single cause,” Grieger says. So if you’ve been diagnosed with prediabetes or have other risk factors for the disease, avoiding any one food group entirely — even sugar — won’t completely offset your risk. Rather, it’s important to prioritize proper nutrition, exercise regularly, and maintain a healthy weight — all steps the American Diabetes Association recommends for preventing type 2 diabetes.
The diabetic patient should learn to recognize symptoms of low blood sugar (such as confusion, sweats, and palpitations) and high blood sugar (such as, polyuria and polydipsia). When either condition results in hospitalization, vital signs, weight, fluid intake, urine output, and caloric intake are accurately documented. Serum glucose and urine ketone levels are evaluated. Chronic management of DM is also based on periodic measurement of glycosylated hemoglobin levels (HbA1c). Elevated levels of HbA1c suggest poor long-term glucose control. The effects of diabetes on other body systems (such as cerebrovascular, coronary artery, and peripheral vascular) should be regularly assessed. Patients should be evaluated regularly for retinal disease and visual impairment and peripheral and autonomic nervous system abnormalities, e.g., loss of sensation in the feet. The patient is observed for signs and symptoms of diabetic neuropathy, e.g., numbness or pain in the hands and feet, decreased vibratory sense, footdrop, and neurogenic bladder. The urine is checked for microalbumin or overt protein losses, an early indication of nephropathy. The combination of peripheral neuropathy and peripheral arterial disease results in changes in the skin and microvasculature that lead to ulcer formation on the feet and lower legs with poor healing. Approx. 45,000 lower-extremity diabetic amputations are performed in the U.S. each year. Many amputees have a second amputation within five years. Most of these amputations are preventable with regular foot care and examinations. Diabetic patients and their providers should look for changes in sensation to touch and vibration, the integrity of pulses, capillary refill, and the skin. All injuries, cuts, and blisters should be treated promptly. The patient should avoid constricting hose, slippers, shoes, and bed linens or walking barefoot. The patient with ulcerated or insensitive feet is referred to a podiatrist for continuing foot care and is warned that decreased sensation can mask injuries.
What medication is available for diabetes? Diabetes causes blood sugar levels to rise. The body may stop producing insulin, the hormone that regulates blood sugar, and this results in type 1 diabetes. In people with type 2 diabetes, insulin is not working effectively. Learn about the range of treatments for each type and recent medical developments here. Read now
Pre-clinical diabetes refers to the time during which destruction of pancreatic insulin-producing cells is occurring, but symptoms have not yet developed. This period may last for months to years. Normally, 80-90% of the pancreatic beta cells must be destroyed before any symptoms of diabetes develops. During this time, blood tests can identify some immunological markers of pancreatic cell destruction. However, there is currently no known treatment to prevent progression of pre-clinical diabetes to true diabetes mellitus.

The term brittle diabetes has been used to refer to people who have dramatic recurrent swings in blood glucose levels, often for no apparent reason. However, this term is no longer used. People with type 1 diabetes may have more frequent swings in blood glucose levels because insulin production is completely absent. Infection, delayed movement of food through the stomach, and other hormonal disorders may also contribute to blood glucose swings. In all people who have difficulty controlling blood glucose, doctors look for other disorders that might be causing the problem and also give people additional education on how to monitor diabetes and take their drugs.

The body’s immune system is responsible for fighting off foreign invaders, like harmful viruses and bacteria. In people with type 1 diabetes, the immune system mistakes the body’s own healthy cells for foreign invaders. The immune system attacks and destroys the insulin-producing beta cells in the pancreas. After these beta cells are destroyed, the body is unable to produce insulin.
1. Monitoring of blood glucose status. In the past, urine testing was an integral part of the management of diabetes, but it has largely been replaced in recent years by self monitoring of blood glucose. Reasons for this are that blood testing is more accurate, glucose in the urine shows up only after the blood sugar level is high, and individual renal thresholds vary greatly and can change when certain medications are taken. As a person grows older and the kidney is less able to eliminate sugar in the urine, the renal threshold rises and less sugar is spilled into the urine. The position statement of the American Diabetes Association on Tests of Glycemia in Diabetes notes that urine testing still plays a role in monitoring in type 1 and gestational diabetes, and in pregnancy with pre-existing diabetes, as a way to test for ketones. All people with diabetes should test for ketones during times of acute illness or stress and when blood glucose levels are consistently elevated.

In ‘type 2 diabetes’ (previously called non-insulin-dependent diabetes mellitus), which accounts for 90% of all diabetes, the beta cells do not stop making insulin completely, but the insulin produced does not work properly so it struggles to store the sugar found in the blood. As a consequence, the pancreas has to produce more insulin to compensate for this reduction in insulin function. This is called insulin resistance and is commonly linked to obesity. This type of diabetes is seen more commonly over the age of 40 years but can occur at any age.  
To explain what hemoglobin A1c is, think in simple terms. Sugar sticks, and when it's around for a long time, it's harder to get it off. In the body, sugar sticks too, particularly to proteins. The red blood cells that circulate in the body live for about three months before they die off. When sugar sticks to these hemoglobin proteins in these cells, it is known as glycosylated hemoglobin or hemoglobin A1c (HBA1c). Measurement of HBA1c gives us an idea of how much sugar is present in the bloodstream for the preceding three months. In most labs, the normal range is 4%-5.9 %. In poorly controlled diabetes, its 8.0% or above, and in well controlled patients it's less than 7.0% (optimal is <6.5%). The benefits of measuring A1c is that is gives a more reasonable and stable view of what's happening over the course of time (three months), and the value does not vary as much as finger stick blood sugar measurements. There is a direct correlation between A1c levels and average blood sugar levels as follows.
Findings from the Diabetes Control and Complications Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have clearly shown that aggressive and intensive control of elevated levels of blood sugar in patients with type 1 and type 2 diabetes decreases the complications of nephropathy, neuropathy, retinopathy, and may reduce the occurrence and severity of large blood vessel diseases. Aggressive control with intensive therapy means achieving fasting glucose levels between 70-120 mg/dl; glucose levels of less than 160 mg/dl after meals; and a near normal hemoglobin A1c levels (see below).
According to the American Diabetes Association, a child has a 1 in 7 risk of getting type 2 diabetes if his/her parent was diagnosed with type 2 diabetes before the age of 50, and a 1 in 13 risk of developing it if the parent was diagnosed after the age of 50. To see if you may be at risk for diabetes, consider taking this short and simple Type 2 Diabetes Risk Test from the ADA.

Because both yeast and bacteria multiply more quickly when blood sugar levels are elevated, women with diabetes are overall at a higher risk of feminine health issues, such as bacterial infections, yeast infections, and vaginal thrush, especially when blood sugar isn't well controlled. And a lack of awareness about having prediabetes or diabetes can make managing blood sugar impossible.