Many older people have difficulty following a healthy, balanced diet that can control blood glucose levels and weight. Changing long-held food preferences and dietary habits may be hard. Some older people have other disorders that can be affected by diet and may not understand how to integrate the dietary recommendations for their various disorders.

It will surely be tough eating salads and vegetables when everyone else at your dinner table is eating pizza. Decide that this diagnosis can benefit the health of the entire family. Educate your family about the benefits of eating a healthy diet. Take your children grocery shopping with you. Practice the plate method: Aim to make half your plate non-starchy vegetables; a quarter lean protein; and a quarter whole grains or starchy vegetables, like sweet potatoes. Make exercise part of your daily routine and include your family. Go for walks after dinner. Head to the pool on the weekends, or enroll in an exercise class. If you don't have children, aim to find others with diabetes or friends that can act as your workout partners.
Monogenic diabetes is caused by mutations, or changes, in a single gene. These changes are usually passed through families, but sometimes the gene mutation happens on its own. Most of these gene mutations cause diabetes by making the pancreas less able to make insulin. The most common types of monogenic diabetes are neonatal diabetes and maturity-onset diabetes of the young (MODY). Neonatal diabetes occurs in the first 6 months of life. Doctors usually diagnose MODY during adolescence or early adulthood, but sometimes the disease is not diagnosed until later in life.
Family or personal history. Your risk increases if you have prediabetes — a precursor to type 2 diabetes — or if a close family member, such as a parent or sibling, has type 2 diabetes. You're also at greater risk if you had gestational diabetes during a previous pregnancy, if you delivered a very large baby or if you had an unexplained stillbirth.
All children with type 1 diabetes mellitus require insulin therapy. Most require 2 or more injections of insulin daily, with doses adjusted on the basis of self-monitoring of blood glucose levels. Insulin replacement is accomplished by giving a basal insulin and a preprandial (premeal) insulin. The basal insulin is either long-acting (glargine or detemir) or intermediate-acting (NPH). The preprandial insulin is either rapid-acting (lispro, aspart, or glulisine) or short-acting (regular).
Diabetic peripheral neuropathy is a condition where nerve endings, particularly in the legs and feet, become less sensitive. Diabetic foot ulcers are a particular problem since the patient does not feel the pain of a blister, callous, or other minor injury. Poor blood circulation in the legs and feet contribute to delayed wound healing. The inability to sense pain along with the complications of delayed wound healing can result in minor injuries, blisters, or callouses becoming infected and difficult to treat. In cases of severe infection, the infected tissue begins to break down and rot away. The most serious consequence of this condition is the need for amputation of toes, feet, or legs due to severe infection.
That said, some research does suggest that eating too many sweetened foods can affect type 2 diabetes risk, and with the Centers for Disease Control and Prevention (CDC) estimating that 30.3 million Americans have the disease — and that millions of more individuals are projected to develop it, too — understanding all the risk factors for the disease, including sugar consumption, is essential to help reverse the diabetes epidemic.
Finally, modern society should probably shoulder at least some of the blame for the type 2 diabetes epidemic. Access to cheap, calorie-laden foods may even influence type 2 risk beyond simply their effects on body weight; the stuff that is in processed foods, like high-fructose corn syrup, could alter the body's chemistry or gut microbes in a way that affects health. Add to that the fact that most Americans are sedentary, spending their time sitting in cubicles, driving in cars, playing video games, or watching television. The lack of exercise, plus the abundance of unhealthy foods, cultivates a fertile breeding ground for diabetes.
Findings from the Diabetes Control and Complications Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have clearly shown that aggressive and intensive control of elevated levels of blood sugar in patients with type 1 and type 2 diabetes decreases the complications of nephropathy, neuropathy, retinopathy, and may reduce the occurrence and severity of large blood vessel diseases. Aggressive control with intensive therapy means achieving fasting glucose levels between 70-120 mg/dl; glucose levels of less than 160 mg/dl after meals; and a near normal hemoglobin A1c levels (see below).
Diabetes mellitus (DM) is best defined as a syndrome characterized by inappropriate fasting or postprandial hyperglycemia, caused by absolute or relative insulin deficiency and its metabolic consequences, which include disturbed metabolism of protein and fat. This syndrome results from a combination of deficiency of insulin secretion and its action. Diabetes mellitus occurs when the normal constant of the product of insulin secretion times insulin sensitivity, a parabolic function termed the “disposition index” (Figure 19-1), is inadequate to prevent hyperglycemia and its clinical consequences of polyuria, polydipsia, and weight loss. At high degrees of insulin sensitivity, small declines in the ability to secrete insulin cause only mild, clinically imperceptible defects in glucose metabolism. However, irrespective of insulin sensitivity, a minimum amount of insulin is necessary for normal metabolism. Thus, near absolute deficiency of insulin must result in severe metabolic disturbance as occurs in type 1 diabetes mellitus (T1DM). By contrast, with decreasing sensitivity to its action, higher amounts of insulin secretion are required for a normal disposition index. At a critical point in the disposition index curve (see Figure 19-1), a further small decrement in insulin sensitivity requires a large increase in insulin secretion; those who can mount these higher rates of insulin secretion retain normal glucose metabolism, whereas those who cannot increase their insulin secretion because of genetic or acquired defects now manifest clinical diabetes as occurs in type 2 diabetes (T2DM).
Another diabetes-related sexual dysfunction symptom in men is reduced amounts of ejaculation, or retrograde ejaculation. Retrograde ejaculation is a condition in which the semen goes into the bladder, rather than out of the body through the urethra. Diabetes and damage to the blood vessels causes nerve damage to the muscles that control the bladder and urethra, which results in this problem.

nephrogenic diabetes insipidus a rare form caused by failure of the renal tubules to reabsorb water; there is excessive production of antidiuretic hormone but the tubules fail to respond to it. Characteristics include polyuria, extreme thirst, growth retardation, and developmental delay. The condition does not respond to exogenous vasopressin. It may be inherited as an X-linked trait or be acquired as a result of drug therapy or systemic disease.
Feeling famished all the time? Your body could be trying to tell you that something’s up with your blood sugar. Many people with diabetes experience extreme hunger when their condition is unmanaged, thanks to high blood sugar levels. When your body can’t effectively convert the sugar in your blood into usable energy, this may leave you pining for every sandwich or sweet you see. And if you’re looking for a filling snack that won’t put your health at risk, enjoy one of the 25 Best and Worst Low-Sugar Protein Bars!

Type 2 Diabetes: Accounting for 90 to 95 percent of those with diabetes, type 2 is the most common form. Usually, it's diagnosed in adults over age 40 and 80 percent of those with type 2 diabetes are overweight. Because of the increase in obesity, type 2 diabetes is being diagnosed at younger ages, including in children. Initially in type 2 diabetes, insulin is produced, but the insulin doesn't function properly, leading to a condition called insulin resistance. Eventually, most people with type 2 diabetes suffer from decreased insulin production.
Q. My 7yr has Diabetes. She been Diabetic for about 5 weeks and we can't get numbers at a good spot. she aether way to low (30- 60 scary when she gets like this) and to high (300 - 400) We been looking at what she eating calling the physician. he been play with here shots but nothing working. Its when she at school is were the nuber are mostly going up an down. we been trying to work with the school but she the only one in the hole school that has Diabetes. what to do ?
Diabetes mellitus (diabetes) is a common chronic disease of abnormal carbohydrate, fat, and protein metabolism that affects an estimated 20 million people in the United States, of whom about one third are undiagnosed. There are two major forms recognized, type-1 and type-2. Both are characterized by inappropriately high blood sugar levels (hyperglycemia). In type-1 diabetes the patient can not produce the hormone insulin, while in type-2 diabetes the patient produces insulin, but it is not used properly. An estimated 90% of diabetic patients suffer from type-2 disease. The causes of diabetes are multiple and both genetic and environmental factors contribute to its development. The genetic predisposition for type-2 diabetes is very strong and numerous environmental factors such as diet, lack of exercise, and being overweight are known to also increase one’s risk for diabetes. Diabetes is a dangerous disease which affects the entire body and diabetic patients are at increased risk for heart disease, hypertension, stroke, kidney failure, blindness, neuropathy, and infection when compared to nondiabetic patients. Diabetic patients also have impaired healing when compared to healthy individuals. This is in part due to the dysfunction of certain white blood cells that fight infection.
Most pediatric patients with diabetes have type 1 diabetes mellitus (T1DM) and a lifetime dependence on exogenous insulin. Diabetes mellitus (DM) is a chronic metabolic disorder caused by an absolute or relative deficiency of insulin, an anabolic hormone. Insulin is produced by the beta cells of the islets of Langerhans located in the pancreas, and the absence, destruction, or other loss of these cells results in type 1 diabetes (insulin-dependent diabetes mellitus [IDDM]). A possible mechanism for the development of type 1 diabetes is shown in the image below. (See Etiology.)
When there is excess glucose present in the blood, as with type 2 diabetes, the kidneys react by flushing it out of the blood and into the urine. This results in more urine production and the need to urinate more frequently, as well as an increased risk of urinary tract infections (UTIs) in men and women. People with type 2 diabetes are twice as likely to get a UTI as people without the disease, and the risk is higher in women than in men.
×