Regular ophthalmological examinations are recommended for early detection of diabetic retinopathy. The patient is educated about diabetes, its possible complications and their management, and the importance of adherence to the prescribed therapy. The patient is taught the importance of maintaining normal blood pressure levels (120/80 mm Hg or lower). Control of even mild-to-moderate hypertension results in fewer diabetic complications, esp. nephropathy, cerebrovascular disease, and cardiovascular disease. Limiting alcohol intake to approximately one drink daily and avoiding tobacco are also important for self-management. Emotional support and a realistic assessment of the patient's condition are offered; this assessment should stress that, with proper treatment, the patient can have a near-normal lifestyle and life expectancy. Long-term goals for a patient with diabetes should include achieving and maintaining optimal metabolic outcomes to prevent complications; modifying diet and lifestyle to prevent and treat obesity, dyslipidemia, cardiovascular disease, hypertension, and nephropathy; improving physical activity; and allowing for the patient’s nutritional and psychosocial needs and preferences. Assistance is offered to help the patient develop positive coping strategies. It is estimated that 23 million Americans will be diabetic by the year 2030. The increasing prevalence of obesity coincides with the increasing incidence of diabetes; approx. 45% of those diagnosed receive optimal care according to established guidelines. According to the CDC, the NIH, and the ADA, about 40% of Americans between ages 40 and 74 have prediabetes, putting them at increased risk for type 2 diabetes and cardiovascular disease. Lifestyle changes with a focus on decreasing obesity can prevent or delay the onset of diabetes in 58% of this population. The patient and family should be referred to local and national support and information groups and may require psychological counseling.
We use cookies and similar technologies to improve your browsing experience, personalize content and offers, show targeted ads, analyze traffic, and better understand you. We may share your information with third-party partners for marketing purposes. To learn more and make choices about data use, visit our Advertising Policy and Privacy Policy. By clicking “Accept and Continue” below, (1) you consent to these activities unless and until you withdraw your consent using our rights request form, and (2) you consent to allow your data to be transferred, processed, and stored in the United States.
Type 2 diabetes is most common is those who are genetically predisposed and who are overweight, lead a sedentary lifestyle, have high blood pressure, and/or have insulin resistance due to excess weight. People of certain ethnicities are more likely to develop diabetes, too. These include: African Americans, Mexican Americans, American Indians, Native Hawaiians, Pacific Islanders, and Asian Americans. These populations are more likely to be overweight and have high blood pressure, which increases the risk of developing diabetes.
There are some interesting developments in blood glucose monitoring including continuous glucose sensors. The new continuous glucose sensor systems involve an implantable cannula placed just under the skin in the abdomen or in the arm. This cannula allows for frequent sampling of blood glucose levels. Attached to this is a transmitter that sends the data to a pager-like device. This device has a visual screen that allows the wearer to see, not only the current glucose reading, but also the graphic trends. In some devices, the rate of change of blood sugar is also shown. There are alarms for low and high sugar levels. Certain models will alarm if the rate of change indicates the wearer is at risk for dropping or rising blood glucose too rapidly. One version is specifically designed to interface with their insulin pumps. In most cases the patient still must manually approve any insulin dose (the pump cannot blindly respond to the glucose information it receives, it can only give a calculated suggestion as to whether the wearer should give insulin, and if so, how much). However, in 2013 the US FDA approved the first artificial pancreas type device, meaning an implanted sensor and pump combination that stops insulin delivery when glucose levels reach a certain low point. All of these devices need to be correlated to fingersticks measurements for a few hours before they can function independently. The devices can then provide readings for 3 to 5 days.
Vulvodynia or vaginal pain, genital pain is a condition in which women have chronic vulvar pain with no known cause. There are two types of vulvodynia, generalized vulvodynia and vulvar vestibulitis. Researchers are trying to find the causes of vulvodynia, for example, nerve irritation, genetic factors, hypersensitivity to yeast infections, muscle spasms, and hormonal changes.The most common symptoms of vaginal pain (vulvodynia) is burning, rawness, itching, stinging, aching, soreness, and throbbing. There are a variety of treatments that can ease the symptoms of vulvodynia (vaginal pain).
All children with type 1 diabetes mellitus require insulin therapy. Most require 2 or more injections of insulin daily, with doses adjusted on the basis of self-monitoring of blood glucose levels. Insulin replacement is accomplished by giving a basal insulin and a preprandial (premeal) insulin. The basal insulin is either long-acting (glargine or detemir) or intermediate-acting (NPH). The preprandial insulin is either rapid-acting (lispro, aspart, or glulisine) or short-acting (regular).
People with type 1 diabetes are unable to produce any insulin at all. People with type 2 diabetes still produce insulin, however, the cells in the muscles, liver and fat tissue are inefficient at absorbing the insulin and cannot regulate glucose well. As a result, the body tries to compensate by having the pancreas pump out more insulin. But the pancreas slowly loses the ability to produce enough insulin, and as a result, the cells don’t get the energy they need to function properly.
Visual impairment and blindness are common sequelae of uncontrolled diabetes. The three most frequently occurring problems involving the eye are diabetic retinopathy, cataracts, and glaucoma. photocoagulation of destructive lesions of the retina with laser beams can be used to delay further progress of pathologic changes and thereby preserve sight in the affected eye.
Jump up ^ Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, Cercy K, Vos T, Murray CJ, Forouzanfar MH (August 2016). "Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013". BMJ. 354: i3857. doi:10.1136/bmj.i3857. PMC 4979358. PMID 27510511.
Type 2 diabetes is typically a chronic disease associated with a ten-year-shorter life expectancy.[10] This is partly due to a number of complications with which it is associated, including: two to four times the risk of cardiovascular disease, including ischemic heart disease and stroke; a 20-fold increase in lower limb amputations, and increased rates of hospitalizations.[10] In the developed world, and increasingly elsewhere, type 2 diabetes is the largest cause of nontraumatic blindness and kidney failure.[24] It has also been associated with an increased risk of cognitive dysfunction and dementia through disease processes such as Alzheimer's disease and vascular dementia.[25] Other complications include acanthosis nigricans, sexual dysfunction, and frequent infections.[23]
Insulin is essential to process carbohydrates, fat, and protein. Insulin reduces blood glucose levels by allowing glucose to enter muscle cells and by stimulating the conversion of glucose to glycogen (glycogenesis) as a carbohydrate store. Insulin also inhibits the release of stored glucose from liver glycogen (glycogenolysis) and slows the breakdown of fat to triglycerides, free fatty acids, and ketones. It also stimulates fat storage. Additionally, insulin inhibits the breakdown of protein and fat for glucose production (gluconeogenesis) in the liver and kidneys.
Recently, battery-operated insulin pumps have been developed that can be programmed to mimic normal insulin secretion more closely. A person wearing an insulin pump still must monitor blood sugar several times a day and adjust the dosage, and not all diabetic patients are motivated or suited to such vigilance. It is hoped that in the future an implantable or external pump system may be perfected, containing a glucose sensor. In response to data from the sensor the pump will automatically deliver insulin according to changing levels of blood glucose.
It is clearly established that diabetes mellitus is not a single disease but a genetically heterogeneous group of disorders that share glucose intolerance in common (4–7). The concept of genetic heterogeneity (i.e. that different genetic and/or environmental etiologic factors can result in similar phenotypes) has significantly altered the genetic analysis of this common disorder. Diabetes and glucose intolerance are not diagnostic terms, but, like anemia, simply describe symptoms and/or laboratory abnormalities that can have a number of distinct etiologies.

In patients with type 2 diabetes, stress, infection, and medications (such as corticosteroids) can also lead to severely elevated blood sugar levels. Accompanied by dehydration, severe blood sugar elevation in patients with type 2 diabetes can lead to an increase in blood osmolality (hyperosmolar state). This condition can worsen and lead to coma (hyperosmolar coma). A hyperosmolar coma usually occurs in elderly patients with type 2 diabetes. Like diabetic ketoacidosis, a hyperosmolar coma is a medical emergency. Immediate treatment with intravenous fluid and insulin is important in reversing the hyperosmolar state. Unlike patients with type 1 diabetes, patients with type 2 diabetes do not generally develop ketoacidosis solely on the basis of their diabetes. Since in general, type 2 diabetes occurs in an older population, concomitant medical conditions are more likely to be present, and these patients may actually be sicker overall. The complication and death rates from hyperosmolar coma is thus higher than in diabetic ketoacidosis.


Diabetic retinopathy is a leading cause of blindness and visual disability. Diabetes mellitus is associated with damage to the small blood vessels in the retina, resulting in loss of vision. Findings, consistent from study to study, make it possible to suggest that, after 15 years of diabetes, approximately 2% of people become blind, while about 10% develop severe visual handicap. Loss of vision due to certain types of glaucoma and cataract may also be more common in people with diabetes than in those without the disease.
The protocol for therapy is determined by the type of diabetes; patients with either type 1 or type 2 must pay attention to their diet and exercise regimens. Insulin therapy may be prescribed for patients with type 2 diabetes as well as any who are dependent on insulin. In most cases, the type 2 diabetes patient can be treated effectively by reducing caloric intake, maintaining target weight, and promoting physical exercise.
With gestational diabetes, risks to the unborn baby are even greater than risks to the mother. Risks to the baby include abnormal weight gain before birth, breathing problems at birth, and higher obesity and diabetes risk later in life. Risks to the mother include needing a cesarean section due to an overly large baby, as well as damage to heart, kidney, nerves, and eye.

Diabetes is a chronic condition, and it can last an entire lifetime. The goal of treating diabetes is to keep blood glucose levels as close to a normal range as possible. This prevents the symptoms of diabetes and the long-term complications of the condition. If you've been diagnosed with diabetes, your doctor – working with the members of your diabetes care team – will help you find your target blood glucose levels.
When there is excess glucose present in the blood, as with type 2 diabetes, the kidneys react by flushing it out of the blood and into the urine. This results in more urine production and the need to urinate more frequently, as well as an increased risk of urinary tract infections (UTIs) in men and women. People with type 2 diabetes are twice as likely to get a UTI as people without the disease, and the risk is higher in women than in men.
×