These diabetes complications are related to blood vessel diseases and are generally classified into small vessel disease, such as those involving the eyes, kidneys and nerves (microvascular disease), and large vessel disease involving the heart and blood vessels (macrovascular disease). Diabetes accelerates hardening of the arteries (atherosclerosis) of the larger blood vessels, leading to coronary heart disease (angina or heart attack), strokes, and pain in the lower extremities because of lack of blood supply (claudication).
Diabetes mellitus (DM) is a strong predictor of cardiovascular morbidity and mortality and is associated with both micro- and macrovascular complications.1 Cardiovascular disease (CVD) causes up to 70% of all deaths in people with DM. The epidemic of DM will thus be followed by a burden of diabetes-related vascular diseases. The number of DM patients increases with aging of the population, in part because of the increasing prevalence of obesity and sedentary lifestyle. Although the mortality from coronary artery disease (CAD) in patients without DM has declined since the 1990s, the mortality in men with type 2 diabetes (T2DM) has not changed significantly.2 Moreover, DM is an independent risk factor for heart failure. Heart failure is closely related to diabetic cardiomyopathy: changes in the structure and function of the myocardium are not directly linked to CAD or hypertension. Diabetic cardiomyopathy is clinically characterized by an initial increase in left ventricular stiffness and subclinical diastolic dysfunction, gradually compromising left ventricular systolic function with loss of contractile function and progress into overt congestive heart failure. DM accounts for a significant percentage of patients with a diagnosis of heart failure in epidemiologic studies such as the Framingham Study and the UK Prospective Diabetes Study (UKPDS).2 A 1% increase in glycated hemoglobin (HbA1c) correlates to an increment of 8% in heart failure.3 The prevalence of heart failure in elderly diabetic patients is up to 30%.3
Insulin works like a key that opens the doors to cells and lets the glucose in. Without insulin, glucose can't get into the cells (the doors are "locked" and there is no key) and so it stays in the bloodstream. As a result, the level of sugar in the blood remains higher than normal. High blood sugar levels are a problem because they can cause a number of health problems.
Hyperglycemia (ie, random blood glucose concentration of more than 200 mg/dL or 11 mmol/L) results when insulin deficiency leads to uninhibited gluconeogenesis and prevents the use and storage of circulating glucose. The kidneys cannot reabsorb the excess glucose load, causing glycosuria, osmotic diuresis, thirst, and dehydration. Increased fat and protein breakdown leads to ketone production and weight loss. Without insulin, a child with type 1 diabetes mellitus wastes away and eventually dies due to DKA. The effects of insulin deficiency are shown in the image below.
Hyperglycemia (ie, random blood glucose concentration of more than 200 mg/dL or 11 mmol/L) results when insulin deficiency leads to uninhibited gluconeogenesis and prevents the use and storage of circulating glucose. The kidneys cannot reabsorb the excess glucose load, causing glycosuria, osmotic diuresis, thirst, and dehydration. Increased fat and protein breakdown leads to ketone production and weight loss. Without insulin, a child with type 1 diabetes mellitus wastes away and eventually dies due to DKA. The effects of insulin deficiency are shown in the image below.
Per the WHO, people with fasting glucose levels from 6.1 to 6.9 mmol/l (110 to 125 mg/dl) are considered to have impaired fasting glucose.[67] people with plasma glucose at or above 7.8 mmol/l (140 mg/dl), but not over 11.1 mmol/l (200 mg/dl), two hours after a 75 gram oral glucose load are considered to have impaired glucose tolerance. Of these two prediabetic states, the latter in particular is a major risk factor for progression to full-blown diabetes mellitus, as well as cardiovascular disease.[68] The American Diabetes Association (ADA) since 2003 uses a slightly different range for impaired fasting glucose of 5.6 to 6.9 mmol/l (100 to 125 mg/dl).[69]
What medication is available for diabetes? Diabetes causes blood sugar levels to rise. The body may stop producing insulin, the hormone that regulates blood sugar, and this results in type 1 diabetes. In people with type 2 diabetes, insulin is not working effectively. Learn about the range of treatments for each type and recent medical developments here. Read now
*All medications have both common (generic) and brand names. The brand name is what a specific manufacturer calls the product (e.g., Tylenol®). The common name is the medical name for the medication (e.g., acetaminophen). A medication may have many brand names, but only one common name. This article lists medications by their common names. For information on a given medication, check our Drug Information database. For more information on brand names, speak with your doctor or pharmacist.
Normally, blood glucose levels are tightly controlled by insulin, a hormone produced by the pancreas. Insulin lowers the blood glucose level. When the blood glucose elevates (for example, after eating food), insulin is released from the pancreas to normalize the glucose level by promoting the uptake of glucose into body cells. In patients with diabetes, the absence of insufficient production of or lack of response to insulin causes hyperglycemia. Diabetes is a chronic medical condition, meaning that although it can be controlled, it lasts a lifetime.
Several tests are helpful in identifying DM. These include tests of fasting plasma glucose levels, casual (randomly assessed) glucose levels, or glycosylated hemoglobin levels. Diabetes is currently established if patients have classic diabetic symptoms and if on two occasions fasting glucose levels exceed 126 mg/dL (> 7 mmol/L), random glucose levels exceed 200 mg/dL (11.1 mmol/L), or a 2-hr oral glucose tolerance test is 200 mg/dL or more. A hemoglobin A1c test that is more than two standard deviations above normal (6.5% or greater) is also diagnostic of the disease.
English Diabetes, Diabetes Mellitus, DIABETES MELLITUS, Unspecified diabetes mellitus, diabetes mellitus, diabetes mellitus (diagnosis), DM, Diabetes mellitus NOS, diabetes NOS, Diabetes Mellitus [Disease/Finding], diabete mellitus, diabetes, disorder diabetes mellitus, diabetes (DM), diabetes mellitus (DM), Diabetes mellitus (E08-E13), Diabetes mellitus, DM - Diabetes mellitus, Diabetes mellitus (disorder), Diabetes mellitus, NOS, Diabetes NOS
nephrogenic diabetes insipidus a rare form caused by failure of the renal tubules to reabsorb water; there is excessive production of antidiuretic hormone but the tubules fail to respond to it. Characteristics include polyuria, extreme thirst, growth retardation, and developmental delay. The condition does not respond to exogenous vasopressin. It may be inherited as an X-linked trait or be acquired as a result of drug therapy or systemic disease.
Type 2 diabetes used to be called adult-onset diabetes or non-insulin dependent diabetes because it was diagnosed mainly in adults who did not require insulin to manage their condition. However, because more children are starting to be diagnosed with T2D, and insulin is used more frequently to help manage type 2 diabetes, referring to the condition as “adult-onset” or “non-insulin dependent” is no longer accurate.
Nerve damage from diabetes is called diabetic neuropathy and is also caused by disease of small blood vessels. In essence, the blood flow to the nerves is limited, leaving the nerves without blood flow, and they get damaged or die as a result (a term known as ischemia). Symptoms of diabetic nerve damage include numbness, burning, and aching of the feet and lower extremities. When the nerve disease causes a complete loss of sensation in the feet, patients may not be aware of injuries to the feet, and fail to properly protect them. Shoes or other protection should be worn as much as possible. Seemingly minor skin injuries should be attended to promptly to avoid serious infections. Because of poor blood circulation, diabetic foot injuries may not heal. Sometimes, minor foot injuries can lead to serious infection, ulcers, and even gangrene, necessitating surgical amputation of toes, feet, and other infected parts.
Large, population-based studies in China, Finland and USA have recently demonstrated the feasibility of preventing, or delaying, the onset of diabetes in overweight subjects with mild glucose intolerance (IGT). The studies suggest that even moderate reduction in weight and only half an hour of walking each day reduced the incidence of diabetes by more than one half.
There are a number of rare cases of diabetes that arise due to an abnormality in a single gene (known as monogenic forms of diabetes or "other specific types of diabetes").[10][13] These include maturity onset diabetes of the young (MODY), Donohue syndrome, and Rabson–Mendenhall syndrome, among others.[10] Maturity onset diabetes of the young constitute 1–5% of all cases of diabetes in young people.[38]

The word mellitus (/məˈlaɪtəs/ or /ˈmɛlɪtəs/) comes from the classical Latin word mellītus, meaning "mellite"[114] (i.e. sweetened with honey;[114] honey-sweet[115]). The Latin word comes from mell-, which comes from mel, meaning "honey";[114][115] sweetness;[115] pleasant thing,[115] and the suffix -ītus,[114] whose meaning is the same as that of the English suffix "-ite".[116] It was Thomas Willis who in 1675 added "mellitus" to the word "diabetes" as a designation for the disease, when he noticed the urine of a diabetic had a sweet taste (glycosuria). This sweet taste had been noticed in urine by the ancient Greeks, Chinese, Egyptians, Indians, and Persians.

While many experts believe that most type 1 genes have been identified, the situation with type 2 diabetes is much different. A recent study found that the known genetic links to type 2 probably account for only about 6 percent of the genetic predisposition for that form of diabetes. This could mean either that some of the genes discovered have a bigger effect than is currently believed or that "we are still missing 94 percent of the genes," says Atul Butte, MD, PhD, an assistant professor of pediatrics at Stanford University.
Other potentially important mechanisms associated with type 2 diabetes and insulin resistance include: increased breakdown of lipids within fat cells, resistance to and lack of incretin, high glucagon levels in the blood, increased retention of salt and water by the kidneys, and inappropriate regulation of metabolism by the central nervous system.[10] However, not all people with insulin resistance develop diabetes, since an impairment of insulin secretion by pancreatic beta cells is also required.[13]

There are many types of sugar. Some sugars are simple, and others are complex. Table sugar (sucrose) is made of two simpler sugars called glucose and fructose. Milk sugar (lactose) is made of glucose and a simple sugar called galactose. The carbohydrates in starches, such as bread, pasta, rice, and similar foods, are long chains of different simple sugar molecules. Sucrose, lactose, carbohydrates, and other complex sugars must be broken down into simple sugars by enzymes in the digestive tract before the body can absorb them.


You are more likely to develop type 2 diabetes if you are not physically active and are overweight or obese. Extra weight sometimes causes insulin resistance and is common in people with type 2 diabetes. The location of body fat also makes a difference. Extra belly fat is linked to insulin resistance, type 2 diabetes, and heart and blood vessel disease. To see if your weight puts you at risk for type 2 diabetes, check out these Body Mass Index (BMI) charts.
Since cardiovascular disease is a serious complication associated with diabetes, some have recommended blood pressure levels below 130/80 mmHg.[89] However, evidence supports less than or equal to somewhere between 140/90 mmHg to 160/100 mmHg; the only additional benefit found for blood pressure targets beneath this range was an isolated decrease in stroke risk, and this was accompanied by an increased risk of other serious adverse events.[90][91] A 2016 review found potential harm to treating lower than 140 mmHg.[92] Among medications that lower blood pressure, angiotensin converting enzyme inhibitors (ACEIs) improve outcomes in those with DM while the similar medications angiotensin receptor blockers (ARBs) do not.[93] Aspirin is also recommended for people with cardiovascular problems, however routine use of aspirin has not been found to improve outcomes in uncomplicated diabetes.[94]
Diabetes mellitus has been recorded in all species but is most commonly seen in middle-aged to older, obese, female dogs. A familial predisposition has been suggested. It is possible to identify two types of diabetes, corresponding to the disease in humans, depending on the response to an intravenous glucose tolerance test. Type I is insulin-dependent and comparable to the juvenile onset form of the disease in children in which there is an absolute deficiency of insulin—there is a very low initial blood insulin level and a low response to the injected glucose. This form is seen in a number of dog breeds, particularly the Keeshond, Doberman pinscher, German shepherd dog, Poodle, Golden retriever and Labrador retriever.
Clinical Manifestations. Diabetes mellitus can present a wide variety of symptoms, from none at all to profound ketosis and coma. If the disease manifests itself late in life, patients may not know they have it until it is discovered during a routine examination, or when the symptoms of chronic vascular disease, insidious renal failure, or impaired vision cause them to seek medical help.

People with type 1 diabetes are unable to produce any insulin at all. People with type 2 diabetes still produce insulin, however, the cells in the muscles, liver and fat tissue are inefficient at absorbing the insulin and cannot regulate glucose well. As a result, the body tries to compensate by having the pancreas pump out more insulin. But the pancreas slowly loses the ability to produce enough insulin, and as a result, the cells don’t get the energy they need to function properly.
Learning about the disease and actively participating in the treatment is important, since complications are far less common and less severe in people who have well-managed blood sugar levels.[76][77] The goal of treatment is an HbA1C level of 6.5%, but should not be lower than that, and may be set higher.[78] Attention is also paid to other health problems that may accelerate the negative effects of diabetes. These include smoking, elevated cholesterol levels, obesity, high blood pressure, and lack of regular exercise.[78] Specialized footwear is widely used to reduce the risk of ulceration, or re-ulceration, in at-risk diabetic feet. Evidence for the efficacy of this remains equivocal, however.[79]
As of 2016, 422 million people have diabetes worldwide,[101] up from an estimated 382 million people in 2013[17] and from 108 million in 1980.[101] Accounting for the shifting age structure of the global population, the prevalence of diabetes is 8.5% among adults, nearly double the rate of 4.7% in 1980.[101] Type 2 makes up about 90% of the cases.[16][18] Some data indicate rates are roughly equal in women and men,[18] but male excess in diabetes has been found in many populations with higher type 2 incidence, possibly due to sex-related differences in insulin sensitivity, consequences of obesity and regional body fat deposition, and other contributing factors such as high blood pressure, tobacco smoking, and alcohol intake.[102][103]
A second oral agent of another class or insulin may be added if metformin is not sufficient after three months.[76] Other classes of medications include: sulfonylureas, thiazolidinediones, dipeptidyl peptidase-4 inhibitors, SGLT2 inhibitors, and glucagon-like peptide-1 analogs.[76] As of 2015 there was no significant difference between these agents.[76] A 2018 review found that SGLT2 inhibitors may be better than glucagon-like peptide-1 analogs or dipeptidyl peptidase-4 inhibitors.[92]

Supporting evidence for Shulman's theory comes from observations about a rare genetic illness called lipodystrophy. People with lipodystrophy can't make fat tissue, which is where fat should properly be stored. These thin people also develop severe insulin resistance and type 2 diabetes. "They have fat stored in places it doesn't belong," like the liver and muscles, says Shulman. "When we treat them . . . we melt the fat away, reversing insulin resistance and type 2 diabetes." Shulman's theory also suggests why some people who carry extra fat don't get type 2. "There are some individuals who store fat [under the skin] who have relatively normal insulin sensitivity, a so-called fit fat individual," he says. Because of the way their bodies store fat, he believes, they don't get diabetes.
Childhood obesity rates are rising, and so are the rates of type 2 diabetes in youth. More than 75% of children with type 2 diabetes have a close relative who has it, too. But it’s not always because family members are related; it can also be because they share certain habits that can increase their risk. Parents can help prevent or delay type 2 diabetes by developing a plan for the whole family:
Jump up ^ Piwernetz K, Home PD, Snorgaard O, Antsiferov M, Staehr-Johansen K, Krans M (May 1993). "Monitoring the targets of the St Vincent Declaration and the implementation of quality management in diabetes care: the DIABCARE initiative. The DIABCARE Monitoring Group of the St Vincent Declaration Steering Committee". Diabetic Medicine. 10 (4): 371–7. doi:10.1111/j.1464-5491.1993.tb00083.x. PMID 8508624.
Type 2 diabetes is mainly caused by insulin resistance. This means no matter how much or how little insulin is made, the body can't use it as well as it should. As a result, glucose can't be moved from the blood into cells. Over time, the excess sugar in the blood gradually poisons the pancreas causing it to make less insulin and making it even more difficult to keep blood glucose under control.
Diabetes mellitus (DM) is a strong predictor of cardiovascular morbidity and mortality and is associated with both micro- and macrovascular complications.1 Cardiovascular disease (CVD) causes up to 70% of all deaths in people with DM. The epidemic of DM will thus be followed by a burden of diabetes-related vascular diseases. The number of DM patients increases with aging of the population, in part because of the increasing prevalence of obesity and sedentary lifestyle. Although the mortality from coronary artery disease (CAD) in patients without DM has declined since the 1990s, the mortality in men with type 2 diabetes (T2DM) has not changed significantly.2 Moreover, DM is an independent risk factor for heart failure. Heart failure is closely related to diabetic cardiomyopathy: changes in the structure and function of the myocardium are not directly linked to CAD or hypertension. Diabetic cardiomyopathy is clinically characterized by an initial increase in left ventricular stiffness and subclinical diastolic dysfunction, gradually compromising left ventricular systolic function with loss of contractile function and progress into overt congestive heart failure. DM accounts for a significant percentage of patients with a diagnosis of heart failure in epidemiologic studies such as the Framingham Study and the UK Prospective Diabetes Study (UKPDS).2 A 1% increase in glycated hemoglobin (HbA1c) correlates to an increment of 8% in heart failure.3 The prevalence of heart failure in elderly diabetic patients is up to 30%.3
Diabetes is suspected based on symptoms. Urine tests and blood tests can be used to confirm a diagnose of diabetes based on the amount of glucose found. Urine can also detect ketones and protein in the urine that may help diagnose diabetes and assess how well the kidneys are functioning. These tests also can be used to monitor the disease once the patient is on a standardized diet, oral medications, or insulin.
Screening for undiagnosed T2DM is recommended at the first prenatal visit in women with above risk factors, using standard diagnostic method criteria. Screening for gestational diabetes (GDM) at 24-28 wk of gestation is recommended in women who do not have previous history of diabetes, as GDM remains asymptomatic11. A history of GDM carries a high risk for developing diabetes.
While discovering you have diabetes can be a terrifying prospect, the sooner you’re treated, the more manageable your condition will be. In fact, a review of research published in the American Diabetes Association journal Diabetes Care reveals that early treatment with insulin can help patients with type 2 diabetes manage their blood sugar better and gain less weight than those who start treatment later.
By the time a person is diagnosed with type 2 diabetes, up to 50% of the beta cells in the pancreas have usually been damaged. In fact, these cells may have been declining for up to 10 years before the diagnosis. Along with raised blood pressure and elevated cholesterol levels, this predisposes the person to arterial damage years before diabetes is diagnosed. So, at the time of diagnosis, the person is already at risk for cardiovascular disease (CVD).
Diabetes is a condition in which the body cannot properly store and use fuel for energy. The body's main fuel is a form of sugar called glucose, which comes from food (after it has been broken down). Glucose enters the blood and is used by cells for energy. To use glucose, the body needs a hormone called insulin that's made by the pancreas. Insulin is important because it allows glucose to leave the blood and enter the body's cells.
Type 2 DM is primarily due to lifestyle factors and genetics.[45] A number of lifestyle factors are known to be important to the development of type 2 DM, including obesity (defined by a body mass index of greater than 30), lack of physical activity, poor diet, stress, and urbanization.[16] Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of Pima Indians and Pacific Islanders.[11] Even those who are not obese often have a high waist–hip ratio.[11]
Polyuria is defined as an increase in the frequency of urination. When you have abnormally high levels of sugar in your blood, your kidneys draw in water from your tissues to dilute that sugar, so that your body can get rid of it through the urine. The cells are also pumping water into the bloodstream to help flush out sugar, and the kidneys are unable to reabsorb this fluid during filtering, which results in excess urination.

In 2013, of the estimated 382 million people with diabetes globally, more than 80 per cent lived in LMIC. It was estimated that India had 65.1 million adults with diabetes in 2013, and had the 2nd position among the top 10 countries with the largest number of diabetes. This number is predicted to increase to 109 million by 2035 unless steps are taken to prevent new cases of diabetes1. Primary prevention of diabetes is feasible and strategies such as lifestyle modification are shown to be effective in populations of varied ethnicity2,3. However, for implementation of the strategies at the population level, national programmes which are culturally and socially acceptable and practical have to be formulated which are currently lacking in most of the developed and developing countries. Early diagnosis and institution of appropriate therapeutic measures yield the desired glycaemic outcomes and prevent the vascular complications4.


Research has shown that there are some ways of preventing type 2 diabetes, or at least delaying its onset. Lifestyle changes such as becoming more active (or staying active, if you already engage in regular physical activity) and making sure your weight stays in a healthy range are two ways to help ward off type 2 diabetes, but talk to your doctor about what else you can do to prevent or manage the disease.

Jump up ^ Qaseem, Amir; Wilt, Timothy J.; Kansagara, Devan; Horwitch, Carrie; Barry, Michael J.; Forciea, Mary Ann (6 March 2018). "Hemoglobin A Targets for Glycemic Control With Pharmacologic Therapy for Nonpregnant Adults With Type 2 Diabetes Mellitus: A Guidance Statement Update From the American College of Physicians". Annals of Internal Medicine. doi:10.7326/M17-0939.

Type 2 diabetes (formerly named non-insulin-dependent) which results from the body's inability to respond properly to the action of insulin produced by the pancreas. Type 2 diabetes is much more common and accounts for around 90% of all diabetes cases worldwide. It occurs most frequently in adults, but is being noted increasingly in adolescents as well.
Another less common form is gestational diabetes, a temporary condition that occurs during pregnancy. Depending on risk factors, between 3% to 13% of Canadian women will develop gestational diabetes which can be harmful for the baby if not controlled. The problem usually clears up after delivery, but women who have had gestational diabetes have a higher risk of developing type 2 diabetes later in life.
Stream a variety of exercise routines to get you moving and motivated! GlucoseZone™ is a digital exercise program that provides you with personalized exercise guidance and support designed to help you achieve the diabetes and fitness results you want. American Diabetes Association members receive an exclusive discount on their GlucoseZone subscription when they sign up using their ADA member ID!
Vulvodynia or vaginal pain, genital pain is a condition in which women have chronic vulvar pain with no known cause. There are two types of vulvodynia, generalized vulvodynia and vulvar vestibulitis. Researchers are trying to find the causes of vulvodynia, for example, nerve irritation, genetic factors, hypersensitivity to yeast infections, muscle spasms, and hormonal changes.The most common symptoms of vaginal pain (vulvodynia) is burning, rawness, itching, stinging, aching, soreness, and throbbing. There are a variety of treatments that can ease the symptoms of vulvodynia (vaginal pain).
×