Type 2 diabetes (T2D) is more common than type 1 diabetes with about 90 to 95 percent of people with diabetes having T2D. According to the Centers for Disease Control and Prevention’s report, 30.3 million Americans, or 9.4% of the US population have diabetes.1 More alarming, an estimated 84 million more American adults have prediabetes, which if not treated, will advance to diabetes within five years.1
In addition to the problems with an increase in insulin resistance, the release of insulin by the pancreas may also be defective and suboptimal. In fact, there is a known steady decline in beta cell production of insulin in type 2 diabetes that contributes to worsening glucose control. (This is a major factor for many patients with type 2 diabetes who ultimately require insulin therapy.) Finally, the liver in these patients continues to produce glucose through a process called gluconeogenesis despite elevated glucose levels. The control of gluconeogenesis becomes compromised.
The beta cells may be another place where gene-environment interactions come into play, as suggested by the previously mentioned studies that link beta cell genes with type 2. "Only a fraction of people with insulin resistance go on to develop type 2 diabetes," says Shulman. If beta cells can produce enough insulin to overcome insulin resistance, a factor that may be genetically predetermined, then a person can stay free of diabetes. But if the beta cells don't have good genes propping them up, then diabetes is the more likely outcome in a person with substantial insulin resistance.

In people with type 1 diabetes, the symptoms often begin abruptly and dramatically. A serious condition called diabetic ketoacidosis, a complication in which the body produces excess acid, may quickly develop. In addition to the usual diabetes symptoms of excessive thirst and urination, the initial symptoms of diabetic ketoacidosis also include nausea, vomiting, fatigue, and—particularly in children—abdominal pain. Breathing tends to become deep and rapid as the body attempts to correct the blood’s acidity (see Acidosis), and the breath smells fruity and like nail polish remover. Without treatment, diabetic ketoacidosis can progress to coma and death, sometimes very quickly.

The development of type 2 diabetes is caused by a combination of lifestyle and genetic factors.[24][26] While some of these factors are under personal control, such as diet and obesity, other factors are not, such as increasing age, female gender, and genetics.[10] A lack of sleep has been linked to type 2 diabetes.[27] This is believed to act through its effect on metabolism.[27] The nutritional status of a mother during fetal development may also play a role, with one proposed mechanism being that of DNA methylation.[28] The intestinal bacteria Prevotella copri and Bacteroides vulgatus have been connected with type 2 diabetes.[29]

Diet and moderate exercise are the first treatments implemented in diabetes. For many Type II diabetics, weight loss may be an important goal in helping them to control their diabetes. A well-balanced, nutritious diet provides approximately 50-60% of calories from carbohydrates, approximately 10-20% of calories from protein, and less than 30% of calories from fat. The number of calories required by an individual depends on age, weight, and activity level. The calorie intake also needs to be distributed over the course of the entire day so surges of glucose entering the blood system are kept to a minimum.


Nerve damage (neuropathy). Excess sugar can injure the walls of the tiny blood vessels (capillaries) that nourish your nerves, especially in the legs. This can cause tingling, numbness, burning or pain that usually begins at the tips of the toes or fingers and gradually spreads upward. Poorly controlled blood sugar can eventually cause you to lose all sense of feeling in the affected limbs. Damage to the nerves that control digestion can cause problems with nausea, vomiting, diarrhea or constipation. For men, erectile dysfunction may be an issue.
When there is excess glucose present in the blood, as with type 2 diabetes, the kidneys react by flushing it out of the blood and into the urine. This results in more urine production and the need to urinate more frequently, as well as an increased risk of urinary tract infections (UTIs) in men and women. People with type 2 diabetes are twice as likely to get a UTI as people without the disease, and the risk is higher in women than in men.
×