Glucose is a simple sugar found in food. Glucose is an essential nutrient that provides energy for the proper functioning of the body cells. Carbohydrates are broken down in the small intestine and the glucose in digested food is then absorbed by the intestinal cells into the bloodstream, and is carried by the bloodstream to all the cells in the body where it is utilized. However, glucose cannot enter the cells alone and needs insulin to aid in its transport into the cells. Without insulin, the cells become starved of glucose energy despite the presence of abundant glucose in the bloodstream. In certain types of diabetes, the cells' inability to utilize glucose gives rise to the ironic situation of "starvation in the midst of plenty". The abundant, unutilized glucose is wastefully excreted in the urine.
FIGURE 19-1 ■. This figure shows the hyperbolic relationship of insulin resistance and beta cell function. On the y-axis is beta cell function as reflected in the first-phase insulin response during intravenous (IV) glucose infusion; on the x-axis is insulin sensitivity and its mirror image resistance. In a subject with normal glucose tolerance (NGT) and beta-cell reserve, an increase in insulin resistance results in increased insulin release and normal glucose tolerance. In an individual for whom the capacity to increase insulin release is compromised, increasing insulin resistance with partial or no beta-cell compensation results in progression from normal glucose tolerance, to impaired glucose tolerance (IGT), and finally to diabetes (T2D). Differences between these categories are small at high insulin sensitivity, which may be maintained by weight reduction, exercise, and certain drugs. At a critical degree of insulin resistance, due to obesity or other listed factors, only a further small increment in resistance requires a large increase in insulin output. Those that can increase insulin secretion to this extent retain normal glucose tolerance; those who cannot achieve this degree of insulin secretion (e.g., due to a mild defect in genes regulating insulin synthesis, insulin secretion, insulin action, or an ongoing immune destruction of beta cells) now unmask varying degrees of carbohydrate intolerance. The product of insulin sensitivity (the reciprocal of insulin resistance) and acute insulin response (a measurement beta-cell function) has been called the “disposition index.” This index remains constant in an individual with normal beta cell compensation in response to changes in insulin resistance. IGT, impaired glucose tolerance; NGT, normal glucose tolerance; T2D, type 2 diabetes.
DM affects at least 16 million U.S. residents, ranks seventh as a cause of death in the United States, and costs the national economy over $100 billion yearly. The striking increase in the prevalence of DM in the U.S. during recent years has been linked to a rise in the prevalence of obesity. About 95% of those with DM have Type 2, in which the pancreatic beta cells retain some insulin-producing potential, and the rest have Type 1, in which exogenous insulin is required for long-term survival. In Type 1 DM, which typically causes symptoms before age 25, an autoimmune process is responsible for beta cell destruction. Type 2 DM is characterized by insulin resistance in peripheral tissues as well as a defect in insulin secretion by beta cells. Insulin regulates carbohydrate metabolism by mediating the rapid transport of glucose and amino acids from the circulation into muscle and other tissue cells, by promoting the storage of glucose in liver cells as glycogen, and by inhibiting gluconeogenesis. The normal stimulus for the release of insulin from the pancreas is a rise in the concentration of glucose in circulating blood, which typically occurs within a few minutes after a meal. When such a rise elicits an appropriate insulin response, so that the blood level of glucose falls again as it is taken into cells, glucose tolerance is said to be normal. The central fact in DM is an impairment of glucose tolerance of such a degree as to threaten or impair health. Long recognized as an independent risk factor for cardiovascular disease, DM is often associated with other risk factors, including disorders of lipid metabolism (elevation of very-low-density lipoprotein cholesterol and triglycerides and depression of high-density lipoprotein cholesterol), obesity, hypertension, and impairment of renal function. Sustained elevation of serum glucose and triglycerides aggravates the biochemical defect inherent in DM by impairing insulin secretion, insulin-mediated glucose uptake by cells, and hepatic regulation of glucose output. Long-term consequences of the diabetic state include macrovascular complications (premature or accelerated atherosclerosis with resulting coronary, cerebral, and peripheral vascular insufficiency) and microvascular complications (retinopathy, nephropathy, and neuropathy). It is estimated that half those with DM already have some complications when the diagnosis is made. The American Diabetes Association (ADA) recommends screening for DM for people with risk factors such as obesity, age 45 years or older, family history of DM, or history of gestational diabetes. If screening yields normal results, it should be repeated every 3 years. The diagnosis of DM depends on measurement of plasma glucose concentration. The diagnosis is confirmed when any two measurements of plasma glucose performed on different days yield levels at or above established thresholds: in the fasting state, 126 mg/dL (7 mmol/L); 2 hours postprandially (after a 75-g oral glucose load) or at random, 200 mg/dL (11.1 mmol/L). A fasting plasma glucose of 100-125 mg/dL (5.5-6.9 mmol/L) or a 2-hour postprandial glucose of 140-199 mg/dL (7.8-11 mmol/L) is defined as impaired glucose tolerance. People with impaired glucose tolerance are at higher risk of developing DM within 10 years. For such people, lifestyle modification such as weight reduction and exercise may prevent or postpone the onset of frank DM. Current recommendations for the management of DM emphasize education and individualization of therapy. Controlled studies have shown that rigorous maintenance of plasma glucose levels as near to normal as possible at all times substantially reduces the incidence and severity of long-term complications, particularly microvascular complications. Such control involves limitation of dietary carbohydrate and saturated fat; monitoring of blood glucose, including self-testing by the patient and periodic determination of glycosylated hemoglobin; and administration of insulin (particularly in Type 1 DM), drugs that stimulate endogenous insulin production (in Type 2 DM), or both. The ADA recommends inclusion of healthful carbohydrate-containing foods such as whole grains, fruits, vegetables, and low-fat milk in a diabetic diet. Restriction of dietary fat to less than 10% of total calories is recommended for people with diabetes, as for the general population. Further restriction may be appropriate for those with heart disease or elevated cholesterol or triglyceride levels. The ADA advises that high-protein, low-carbohydrate diets have no particular merit in long-term weight control or in maintenance of a normal plasma glucose level in DM. Pharmaceutical agents developed during the 1990s improve control of DM by enhancing responsiveness of cells to insulin, counteracting insulin resistance, and reducing postprandial carbohydrate absorption. Tailor-made insulin analogues produced by recombinant DNA technology (for example, lispro, aspart, and glargine insulins) have broadened the range of pharmacologic properties and treatment options available. Their use improves both short-term and long-term control of plasma glucose and is associated with fewer episodes of hypoglycemia. SEE ALSO insulin resistance
The progression of nephropathy in patients can be significantly slowed by controlling high blood pressure, and by aggressively treating high blood sugar levels. Angiotensin converting enzyme inhibitors (ACE inhibitors) or angiotensin receptor blockers (ARBs) used in treating high blood pressure may also benefit kidney disease in patients with diabetes.
Type 2 diabetes is different. A person with type 2 diabetes still produces insulin but the body doesn't respond to it normally. Glucose is less able to enter the cells and do its job of supplying energy (a problem called insulin resistance). This raises the blood sugar level, so the pancreas works hard to make even more insulin. Eventually, this strain can make the pancreas unable to produce enough insulin to keep blood sugar levels normal.
No single environmental trigger has been identified as causing diabetes mellitus, however both infectious agents and dietary factors are thought to be important. Various viruses have been implicated in the development of type I DM. They may act by initiating or modifying the autoimmune process. In particular, the rubella virus and coxsackie viruses have been closely studied. In particular, congenital rubella infection has shown direct relationships with the development of type 1 diabetes mellitus. This is presumably due to the virus (or antibodies against it) damaging the beta cells of the pancreas. Some research has looked at dietary factors that may be associated with type 1 diabetes. In particular, cow’s milk proteins (such as bovine serum albumin) which may have some similarities to pancreatic islet cell markers may be able to trigger the autoimmune process. Other chemicals including nitrosamines have been identified as causes of diabetes mellitus in animal models, but not in humans.
What you need to know about borderline diabetes Borderline diabetes, known as prediabetes, is a condition where blood sugar levels are higher than normal but not yet high enough to be type 2 diabetes. This MNT Knowledge Center article explains the signs to look out for, how to monitor the disease, and ways to prevent it becoming full diabetes. Read now
A population-based, nationwide cohort study in Finland examined the short -and long-term time trends in mortality among patients with early-onset and late-onset type 1 diabetes. The results suggest that in those with early-onset type 1 diabetes (age 0-14 y), survival has improved over time. Survival of those with late-onset type 1 diabetes (15-29 y) has deteriorated since the 1980s, and the ratio of deaths caused by acute complications has increased in this group. Overall, alcohol was noted as an important cause of death in patients with type 1 diabetes; women had higher standardized mortality ratios than did men in both groups. [38]
Regular ophthalmological examinations are recommended for early detection of diabetic retinopathy. The patient is educated about diabetes, its possible complications and their management, and the importance of adherence to the prescribed therapy. The patient is taught the importance of maintaining normal blood pressure levels (120/80 mm Hg or lower). Control of even mild-to-moderate hypertension results in fewer diabetic complications, esp. nephropathy, cerebrovascular disease, and cardiovascular disease. Limiting alcohol intake to approximately one drink daily and avoiding tobacco are also important for self-management. Emotional support and a realistic assessment of the patient's condition are offered; this assessment should stress that, with proper treatment, the patient can have a near-normal lifestyle and life expectancy. Long-term goals for a patient with diabetes should include achieving and maintaining optimal metabolic outcomes to prevent complications; modifying diet and lifestyle to prevent and treat obesity, dyslipidemia, cardiovascular disease, hypertension, and nephropathy; improving physical activity; and allowing for the patient’s nutritional and psychosocial needs and preferences. Assistance is offered to help the patient develop positive coping strategies. It is estimated that 23 million Americans will be diabetic by the year 2030. The increasing prevalence of obesity coincides with the increasing incidence of diabetes; approx. 45% of those diagnosed receive optimal care according to established guidelines. According to the CDC, the NIH, and the ADA, about 40% of Americans between ages 40 and 74 have prediabetes, putting them at increased risk for type 2 diabetes and cardiovascular disease. Lifestyle changes with a focus on decreasing obesity can prevent or delay the onset of diabetes in 58% of this population. The patient and family should be referred to local and national support and information groups and may require psychological counseling.
Test Your Blood Sugar: Blood sugar testing is an important part of helping to manage your diabetes. Whether you choose to do selective blood sugar testing or test your blood sugar at the same times daily, blood sugar testing gives you another piece of information and can help you change your diet and adjust your fitness routine or medicines. Keeping your blood sugars at target will help to reduce diabetes complications.
Low glycemic index foods also may be helpful. The glycemic index is a measure of how quickly a food causes a rise in your blood sugar. Foods with a high glycemic index raise your blood sugar quickly. Low glycemic index foods may help you achieve a more stable blood sugar. Foods with a low glycemic index typically are foods that are higher in fiber.
Glucose is a simple sugar found in food. Glucose is an essential nutrient that provides energy for the proper functioning of the body cells. Carbohydrates are broken down in the small intestine and the glucose in digested food is then absorbed by the intestinal cells into the bloodstream, and is carried by the bloodstream to all the cells in the body where it is utilized. However, glucose cannot enter the cells alone and needs insulin to aid in its transport into the cells. Without insulin, the cells become starved of glucose energy despite the presence of abundant glucose in the bloodstream. In certain types of diabetes, the cells' inability to utilize glucose gives rise to the ironic situation of "starvation in the midst of plenty". The abundant, unutilized glucose is wastefully excreted in the urine.
Purified human insulin is most commonly used, however, insulin from beef and pork sources also are available. Insulin may be given as an injection of a single dose of one type of insulin once a day. Different types of insulin can be mixed and given in one dose or split into two or more doses during a day. Patients who require multiple injections over the course of a day may be able to use an insulin pump that administers small doses of insulin on demand. The small battery-operated pump is worn outside the body and is connected to a needle that is inserted into the abdomen. Pumps can be programmed to inject small doses of insulin at various times during the day, or the patient may be able to adjust the insulin doses to coincide with meals and exercise.

People with type 1 diabetes sometimes receive transplantation of an entire pancreas or of only the insulin-producing cells from a donor pancreas. This procedure may allow people with type 1 diabetes mellitus to maintain normal glucose levels. However, because immunosuppressant drugs must be given to prevent the body from rejecting the transplanted cells, pancreas transplantation is usually done only in people who have serious complications due to diabetes or who are receiving another transplanted organ (such as a kidney) and will require immunosuppressant drugs anyway.
Anal itching is the irritation of the skin at the exit of the rectum, known as the anus, accompanied by the desire to scratch. Causes include everything from irritating foods we eat, to certain diseases, and infections. Treatment options include medicine including, local anesthetics, for example, lidocaine (Xylocaine), pramoxine (Fleet Pain-Relief), and benzocaine (Lanacane Maximum Strength), vasoconstrictors, for example, phenylephrine 0.25% (Medicone Suppository, Preparation H, Rectocaine), protectants, for example, glycerin, kaolin, lanolin, mineral oil (Balneol), astringents, for example, witch hazel and calamine, antiseptics, for example, boric acid and phenol, aeratolytics, for example, resorcinol, analgesics, for example, camphor and juniper tar, and corticosteroids.
But if you’re struggling with weight loss, eating fewer foods with added sugar and fat can be a step in the right direction for improving your health and potentially reducing your diabetes risk. In fact, if you have been diagnosed with prediabetes, losing just 5 to 7 percent of your body weight can reduce your risk for type 2 diabetes, according to the CDC.
Diabetes has been recorded throughout history, since Egyptian times. It was given the name diabetes by the ancient Greek physician Aratus of Cappadocia. The full term, however, was not coined until 1675 in Britain by Thomas Willis, who rediscovered that the blood and urine of people with diabetes were sweet. This phenomenon had previously been discovered by ancient Indians.
It is important to record blood glucose readings taken at different times of the day – after fasting (before breakfast) as well as 2 hours after a meal. This allows your doctor to see a snapshot of how your blood glucose levels vary during the day and to recommend treatments accordingly. Most blood glucose meters now have "memory" that stores a number of blood glucose tests along with the time and date they were taken. Some even allow for graphs and charts of the results to be created and sent to your phone.
According to the American Diabetes Association, a child has a 1 in 7 risk of getting type 2 diabetes if his/her parent was diagnosed with type 2 diabetes before the age of 50, and a 1 in 13 risk of developing it if the parent was diagnosed after the age of 50. To see if you may be at risk for diabetes, consider taking this short and simple Type 2 Diabetes Risk Test from the ADA.
With gestational diabetes, risks to the unborn baby are even greater than risks to the mother. Risks to the baby include abnormal weight gain before birth, breathing problems at birth, and higher obesity and diabetes risk later in life. Risks to the mother include needing a cesarean section due to an overly large baby, as well as damage to heart, kidney, nerves, and eye.
There are a number of rare cases of diabetes that arise due to an abnormality in a single gene (known as monogenic forms of diabetes or "other specific types of diabetes").[10][13] These include maturity onset diabetes of the young (MODY), Donohue syndrome, and Rabson–Mendenhall syndrome, among others.[10] Maturity onset diabetes of the young constitute 1–5% of all cases of diabetes in young people.[38]
You may be able to manage your type 2 diabetes with healthy eating and being active, or your doctor may prescribe insulin, other injectable medications, or oral diabetes medicines to help control your blood sugar and avoid complications. You’ll still need to eat healthy and be active if you take insulin or other medicines. It’s also important to keep your blood pressure and cholesterol under control and get necessary screening tests.
Large, population-based studies in China, Finland and USA have recently demonstrated the feasibility of preventing, or delaying, the onset of diabetes in overweight subjects with mild glucose intolerance (IGT). The studies suggest that even moderate reduction in weight and only half an hour of walking each day reduced the incidence of diabetes by more than one half.

This content is provided as a service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health. The NIDDK translates and disseminates research findings through its clearinghouses and education programs to increase knowledge and understanding about health and disease among patients, health professionals, and the public. Content produced by the NIDDK is carefully reviewed by NIDDK scientists and other experts.
Type 2 diabetes mellitus (non–insulin-dependent diabetes mellitus [NIDDM]) is a heterogeneous disorder. Most patients with type 2 diabetes mellitus have insulin resistance, and their beta cells lack the ability to overcome this resistance. [6] Although this form of diabetes was previously uncommon in children, in some countries, 20% or more of new patients with diabetes in childhood and adolescence have type 2 diabetes mellitus, a change associated with increased rates of obesity. Other patients may have inherited disorders of insulin release, leading to maturity onset diabetes of the young (MODY) or congenital diabetes. [7, 8, 9] This topic addresses only type 1 diabetes mellitus. (See Etiology and Epidemiology.)

Recognizing the symptoms of Type 1 diabetes is critical. Although Type 1 develops gradually, as the body’s insulin production decreases, blood glucose levels can become dangerously high once insulin production is outpaced. Symptoms may develop rapidly and can be mistaken for other illnesses such as the flu and a delayed diagnosis can have serious consequences.


Diabetes mellitus is linked with an increased risk of heart attacks, strokes, poor blood circulation to the legs and damage to the eyes, feet and kidneys. Early diagnosis and strict control of blood sugar, blood pressure and cholesterol levels can help to prevent or delay these complications associated with diabetes. Maintaining a healthy lifestyle (regular exercise, eating healthily and maintaining a healthy weight) is important in reducing the risk of developing type 2 diabetes.
Visual impairment and blindness are common sequelae of uncontrolled diabetes. The three most frequently occurring problems involving the eye are diabetic retinopathy, cataracts, and glaucoma. photocoagulation of destructive lesions of the retina with laser beams can be used to delay further progress of pathologic changes and thereby preserve sight in the affected eye.

Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar. There is variability in its manifestations, wherein some individuals have only asymptomatic glucose intolerance, while others present acutely with diabetic ketoacidosis, and still others develop chronic complications such as nephropathy, neuropathy, retinopathy, or accelerated atherosclerosis. It is among the most common of chronic disorders, affecting up to 5–10% of the adult population of the Western world. Its prevalence varies over the globe, with certain populations, including some American Indian tribes and the inhabitants of Micronesia and Polynesia, having extremely high rates of diabetes (1,2). The prevalence of diabetes is increasing dramatically and it has been estimated that the worldwide prevalence will increase by more than 50% between the years 2000 and 2030 (3).

Most cases (95%) of type 1 diabetes mellitus are the result of environmental factors interacting with a genetically susceptible person. This interaction leads to the development of autoimmune disease directed at the insulin-producing cells of the pancreatic islets of Langerhans. These cells are progressively destroyed, with insulin deficiency usually developing after the destruction of 90% of islet cells.
If you are a diabetic and are pregnant you can have a normal, healthy pregnancy, but you need to take extra steps to avoid gaining excess weight and high blood sugars. Lifestyle habits (eating primarily vegetables and lean protein and exercising every day) will prevent problems during pregnancy. If you are a diabetic and become pregnant, monitor your blood sugar levels often. Talk with your doctor about exploring additional health care professionals, for example, a nutritionist, health coach, or naturopathic doctor about a healthy eating plan. If your blood sugar gets out of control you may:
"Secondary" diabetes refers to elevated blood sugar levels from another medical condition. Secondary diabetes may develop when the pancreatic tissue responsible for the production of insulin is destroyed by disease, such as chronic pancreatitis (inflammation of the pancreas by toxins like excessive alcohol), trauma, or surgical removal of the pancreas.
A chronic metabolic disorder in which the use of carbohydrate is impaired and that of lipid and protein is enhanced. It is caused by an absolute or relative deficiency of insulin and is characterized, in more severe cases, by chronic hyperglycemia, glycosuria, water and electrolyte loss, ketoacidosis, and coma. Long-term complications include neuropathy, retinopathy, nephropathy, generalized degenerative changes in large and small blood vessels, and increased susceptibility to infection.
Insulin works like a key that opens the doors to cells and lets the glucose in. Without insulin, glucose can't get into the cells (the doors are "locked" and there is no key) and so it stays in the bloodstream. As a result, the level of sugar in the blood remains higher than normal. High blood sugar levels are a problem because they can cause a number of health problems.
In the exchange system, foods are divided into six food groups (starch, meat, vegetable, fruit, milk, and fat) and the patient is taught to select items from each food group as ordered. Items in each group may be exchanged for each other in specified portions. The patient should avoid concentrated sweets and should increase fiber in the diet. Special dietetic foods are not necessary. Patient teaching should emphasize that a diabetic diet is a healthy diet that all members of the family can follow.

Oral Agents. Oral antidiabetic drugs (see hypoglycemic agents) are sometimes prescribed for patients with type 2 diabetes who cannot control their blood glucose with diet and exercise. These are not oral forms of insulin; they are sulfonylureas, chemically related to the sulfonamide antibiotics. Patients receiving them should be taught that the drug they are taking does not eliminate the need for a diet and exercise program. Only the prescribed dosage should be taken; it should never be increased to make up for dietary indiscretions or discontinued unless authorized by the physician.

Originally described in approximately 30% of patients with type 1 diabetes mellitus, limited joint mobility occurs in 50% of patients older than age 10 years who have had diabetes for longer than 5 years. The condition restricts joint extension, making it difficult to press the hands flat against each other. The skin of patients with severe joint involvement has a thickened and waxy appearance.
Fasting plasma glucose level: If your blood glucose level is 7.0 mmol/L or higher after having not eaten anything for at least 8 hours – called fasting – your doctor may diagnose diabetes. If your blood glucose level is between 6.1 to 6.9 mmol/L, your doctor may diagnose impaired fasting glucose or prediabetes (a condition that may later develop into diabetes).
Low testosterone (low-T) can be caused by conditions such as type 2 diabetes, obesity, liver or kidney disease, hormonal disorders, certain infections, and hypogonadism. Signs and symptoms that a person may have low-T include insomnia, increased body fat, weight gain, reduced muscle, infertility, decreased sex drive, depression, and worsening of congestive heart failure or sleep apnea.
×